Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 144))

Abstract

The interaction of nano particulates with conventional materials generally has the effect of dramatically changing all the physical parameters of the material, which normally characterize the bulk material. The nanoparticles themselves constitute highly reactive isolated sites, to the extent that the electronic structure of the nano composite is changed, and accordingly all the physical properties, such as thermal, mechanical, electrical, magnetic and optical become different from those of the bulk materials. In fact generally, the smaller the particles, the greater the quantum effects, which means greater changes to the bulk physical properties of the nano-composite, and this phenomenon is widely accepted as not being properly understood. Nanofluids are simply standard fluids such as water, engine oil, ethylene glycol and toluene, but including a small volume percentage, usually less than 5% of evenly dispersed nanoparticles, which are usually metallic. In this paper, we present a survey of some of the attempts to model the enhanced thermal conductivity of such nanofluids, and address issues such as the nanoparticles themselves, the surrounding layer, cluster structure, the fluid environment, and the different heat transport processes at the micro and nano scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruggeman, D.A.G. (1935) Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mis-chkorper aus Isotropen Substanzen, Annalen der Physik, Leipzig 24, 636–679.

    Google Scholar 

  • Chen, G. (1996) Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles, ASME, Journal of Heat Transfer 118, 539–545.

    Google Scholar 

  • Choi, S.U.S. (1995) Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, D.A. Siginer and H.P. Wang (eds), Fluid Eng. Div. Vol. 231, ASME, New York, pp. 99–105.

    Google Scholar 

  • Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E. and Grulke, E.A. (2001) Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters 79, 2252–2254.

    Article  Google Scholar 

  • Das, S.K., Putra, N., Thiesen, P. and Roetzel, W. (2003) Temperature dependence of thermal conductivity enhancement for nanofluids, ASME, Journal of Heat Transfer 125, 567–574.

    Article  Google Scholar 

  • Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J. (2001) Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters 78, 718–720.

    Article  Google Scholar 

  • Hamilton, R.L. and Crosser, O.K. (1962) Thermal conductivity of heterogeneous two-component systems, I and EC Fundamentals 1, 187–191.

    Article  Google Scholar 

  • Hong, T.-K. and Yang, H.-S. (2005) Study of the enhanced thermal conductivity of Fe nano-fluids, Journal of Applied Physics 97, 064311–3.

    Article  Google Scholar 

  • Hui, P.M. and Stroud, D. (1986) Complex dielectric response of metal-particle clusters, Physical Review B 33, 2163–2169.

    Article  Google Scholar 

  • Keblinski, P., Phillpot, S.R., Choi, S.U.S. and Eastman, J.A. (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), International Journal of Heat and Mass Transfer 45, 855–863.

    Article  MATH  Google Scholar 

  • Kumar, D.H., Patel, H.E., Kumar, V.R.R., Sundararajan, T., Pradeep, T. and Das, S.K. (2004) Model for heat conduction in nanofluids, Physical Review Letters 93, 144301–4.

    Article  Google Scholar 

  • Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A. (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME, Journal of Heat Transfer 121, 280–289.

    Google Scholar 

  • Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N. (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei 4 (Japan), 227–233.

    Google Scholar 

  • Maxwell, J.C. (1904) Electricity and Magnetism, Part II, 3rd edn, Clarendon, Oxford, pp. 435–440.

    Google Scholar 

  • Majumdar, A. (1998) Microscale energy transport in solids, in Microscale Energy Transport, C.L. Tien, A. Majumdar and F. Gerner (eds), Taylor and Francis, Washington, DC.

    Google Scholar 

  • Nimtz, G., Marquardt, P. and Gleiter, H. (1988) Size-induced metal-insulator transition in metals and semiconductors, Journal of Crystal Growth 86, 66–71.

    Article  Google Scholar 

  • Patal, H.E., Das, S.K., Sundararajan, T., Nair, A.S., George, B. and Pradeep, T. (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Applied Physics Letters 83, 2931–2933.

    Article  Google Scholar 

  • Schwartz, L.M., Garboczi, E.J. and Bentz, D.P. (1995) Interfacial transport in porous media: Application to DC electrical conductivity of mortars, Journal of Applied Physics 78, 5898–5908.

    Article  Google Scholar 

  • Wang, X., Xu, X. and Choi, S.U.S. (1999) Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermophysics and Heat Transfer 13, 474–480.

    Article  Google Scholar 

  • Wang, B., Zhou, L. and Peng, X. (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer 46, 2665–2672.

    Article  MATH  Google Scholar 

  • Xie. H., Wang, J., Xi, T., Liu, Y. and Ai, F. (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Journal of Applied Physics 91, 4568–4572.

    Article  Google Scholar 

  • Xuan, Y., Li, Q. and Hu, W. (2003) Aggregation structure and thermal conductivity of nano-fluids, AIChE, Journal of Thermodynamics 49, 1038–1042.

    Google Scholar 

  • Yan, J.M., Zhang, Q.Y. and Gao, J. Q. (1986) Adsorption and Agglomeration-Surface and Porosity of Solid, Science Press, Beijing [in Chinese].

    Google Scholar 

  • Yu, W. and Choi, S.U.S. (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, Journal of Nanoparticle Research 5, 167–171.

    Article  Google Scholar 

  • Yu, W. and Choi, S.U.S. (2004) The role of interfacial layers in the enhanced thermal conductivities of nanofluids: A renovated Hamilton-Crosser model, Journal of Nanoparticle Research 6, 355–361.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Tillman, P., Hill, J.M. (2007). Modelling the Thermal Conductivity of Nanofluids. In: Bai, Y.L., Zheng, Q.S., Wei, Y.G. (eds) IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials. Solid Mechanics and its Applications, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5624-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5624-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5623-9

  • Online ISBN: 978-1-4020-5624-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics