Skip to main content

Voltage-Induced Gating Of Ion Channels

  • Chapter
Voltage-Sensitive Ion Channels
  • 1119 Accesses

In Chapter 16 we introduced the proposal that membrane excitability is based on ferroelectric properties in membrane molecules. Smectic liquid crystals, we saw in Chapter 17, are capable of exhibiting ferroelectricity when chiral molecules are tilted with respect to the layer normal. Here we explore this proposal, extending it to the molecular level. We saw in Chapter 19 that, while the size of the domain is indeed a limiting factor, voltage-sensitive ion channels are large enough to be capable of sustaining a ferroelectric domain, and that electric fields and temperature variations can switch this ferroelectric phase on and off. We will explore ways in which this phase transition can alter the ion conductance of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes And References

  1. Reprinted from E. Sackmann, in Biological Membranes, vol. 5, edited by Dennis Chapman, Academic, London, Copyright 1984, 105–143, with permission from Elsevier.

    Google Scholar 

  2. T. Mitsui, I. Tatsuzaki and E. Nakamura, An Introduction to the Physics of Ferroelectrics, Gordon and Breach, New York, 1976, 321.

    Google Scholar 

  3. S. Wrobel, M. Marzec, M. Godlewska, B. Gestblom, S. Hiller and W. Haase, SPIE 2372:169– 175, 1995.

    Article  ADS  Google Scholar 

  4. A. S. Davydov, Solitons in Molecular Systems, D. Reidel, Dordrecht, 1985, 71–78. With kind permission of Springer Science and Business Media.

    MATH  Google Scholar 

  5. G. Zundel, Adv. Chem. Phys. 111:1–217, 2000.

    Article  Google Scholar 

  6. G. Iliadis, G. Zundel and B. Brzezinski, FEBS Letters 352:315–317, 1994.

    Article  Google Scholar 

  7. Nikolaus Wellner and Georg Zundel, J. Molec. Struct. 317:249–259, 1994.

    Article  Google Scholar 

  8. David W. Brown, Katja Lindenberg and Xidi Wang, in Davydov's Soliton Revisited: Self– Trapping of Vibrational Energy in Protein, edited by Peter L. Christiansen and Alwyn C. Scott, Plenum, New York, 1990, 63–82. With kind permission of Springer Science and Business Media.

    Google Scholar 

  9. K. Iwasa and I. Tasaki, Biochem. Biophys. Res. Comm. 95:1328–1331, 1980; K. Iwasa, I. Tasaki and R. C. Gibbons, Science 210: 338–339, 1980.

    Article  Google Scholar 

  10. N. Yang, A. L. George, Jr. and R. Horn, Neuron 16:113–122, 1996; L. M. Mannuzzu, M. M. Maronne and E. Y. Isacoff, Science 271:213–216, 1996; O.S. Baker, H.P. Larsson, L. M. Mannuzzu and E. Y. Isacoff, Neuron 20:1283–1294, 1998; A. Cha, P.C. Ruben, A. L. George, Jr., E. Fujimoto and F. Bezanilla, Neuron 22:73–87, 1999.

    Article  Google Scholar 

  11. O. Helluin, M. Beyermann, H. R. Leuchtag and H. Duclohier, IEEE Trans. Diel. El. Insul. 8:637–643, 2001.

    Article  Google Scholar 

  12. J. F. Nagle, M. Mille and H. J. Morowitz, J. Chem. Phys. 72:3959–3971, 1980.

    Article  ADS  Google Scholar 

  13. A. K. Dunker and D. A. Marvin, J. Theor. Biol. 72:9, 1978.

    Article  Google Scholar 

  14. P. Yager, J. Theor. Biol. 66:1,1977.

    Article  Google Scholar 

  15. H. D. Chandler, C. J. Woolf and H. R. Hepburn, Biochem. J. 168:559–565, 1978.

    Google Scholar 

  16. P. Th. Van Duijnen and B. T. Thole, Chem. Phys. Let. 83:129–133, 1981.

    Article  ADS  Google Scholar 

  17. S. P. Ionov and G. V. Ionova, Dokl. Biophys. 202:22–24, 1972; translated from Dokl. Acad. Nauk. 202: 960–962, 1972.

    Google Scholar 

  18. G. Zundel, Trends in Physical Chemistry 3:129–156, 1992; G. Zundel, Ferroel. 220(3–4): 221– 242, 1999.

    Google Scholar 

  19. Reprinted from G. Zundel, B. Brzezinski and J. Olejnik, J. Mol. Struct. 300: 573–592, 1993, with permission from Elsevier.

    Article  ADS  Google Scholar 

  20. Reprinted from Zundel et al., 1993, with permission from Elsevier.

    Google Scholar 

  21. B. Brzezinski, A. Jarczewski and G. Zundel, J. Molec. Liquids 67:15–21, 1995.

    Article  Google Scholar 

  22. R. Janoschek, E. G. Weidemann, H. Pfeiffer and G. Zundel, J. Amer. Chem. Soc. 94:2378– 2396, 1972.

    Article  Google Scholar 

  23. G. Zundel, in Biophysics, edited by W. Hoppe, W. Lohmann, H. Markl and H. Ziegler, Springer, Berlin, 1983, 243–254. With kind permission of Springer Science and Business Media.

    Google Scholar 

  24. M. Eckert and G. Zundel, J. Phys. Chem. 91:5170–5177, 1987; G. Zundel, Adv. Chem. Phys. 111:1–217, 2000.

    Article  Google Scholar 

  25. Georg Zundel, in Transport through Membranes, Carriers and Pumps, edited by Alberte Pullman, Joshua Jortner and Bernard Pullman, Kluwer Academic, Dordrecht, 1988, 409–420.

    Google Scholar 

  26. G. Zundel and B. Brzezinski, in Proton Transfer in Hydrogen–Bonded Systems, edited by T. Bountis, Plenum, New York, 1992, 153–166; G. Zundel, J. Mol. Struct. 322:33–42, 1994; G. P. Tsironis, in Nonlinear Excitation in Biomolecules, edited by M. Peyrard, Springer, Berlin and Les Editions de Physique, Les Ulis, 1995, 361–367.

    Google Scholar 

  27. H. R. Leuchtag, Biophys. J. 70: A321, 1996.

    Article  Google Scholar 

  28. H. R. Leuchtag and V. S. Bystrov, Ferroel. 220:157–204, 1999.

    Article  Google Scholar 

  29. H. R. Leuchtag, Biophys. J. 66(2): A356, 1994.

    Google Scholar 

  30. O. S. Andersen, Ann. Rev. Physiol. 46:531–548, 1984.

    Article  Google Scholar 

  31. O. S. Andersen and R. E. Koeppe II, Physiol. Rev. 72: S89–S158, 1992.

    Google Scholar 

  32. C. L. Schauf, in Structure and Function in Excitable Cells, edited by D. C. Chang, I. Tasaki, W. J. Adelman Jr. and H. R. Leuchtag, Plenum, New York, 1983, 347–363.

    Google Scholar 

  33. L. Y. Jan and Y. N. Jan, Cell 56: 13–25, 1989.

    Article  Google Scholar 

  34. P. A. Pappone, J. Physiol. 306:377–410, 1980. By permission of Blackwell Publishing.

    Google Scholar 

  35. Reprinted from, Constance Hammond, Cellular and Molecular Neurobiology, Academic, San Diego, 1996, 136f, with permission from Elsevier.

    Google Scholar 

  36. Bertil Hille, Ion Channels of Excitable Membranes, Third Edition, Sinauer, Sunderland, 2001, 631–634.

    Google Scholar 

  37. A. A. Sonin, The Surface Physics of Liquid Crystals, Gordon and Breach, Amsterdam, 51–58.

    Google Scholar 

  38. J. Metuzals, D. F. Clapin and I. Tasaki, in Structure and Function in Excitable Cells, edited by D.C. Chang, I. Tasaki, W. J. Adelman, Jr. and H. R. Leuchtag, Plenum, New York, 1983, 53– 73; Alan J. Hodge and William J. Adelman, Jr., op. cit., 75–111; Nobutaka Hirokawa, op. cit., 113–141.

    Google Scholar 

Download references

Editor information

H. Richard Leuchtag

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Voltage-Induced Gating Of Ion Channels. In: Leuchtag, H.R. (eds) Voltage-Sensitive Ion Channels. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5525-6_20

Download citation

Publish with us

Policies and ethics