Skip to main content
  • 1109 Accesses

Analogy is a very powerful method of extending our knowledge. By seeing the similarities between the object under investigation with another, better understood object, we can often obtain insights that advance our thinking. However, the method of analogy has a serious drawback: We don't always know when to stop. We often continue to equate the object with its analog even when the method is no longer fruitful. We must be prepared to drop the analogy when it no longer yields worthwhile results. We have seen that the gated-pore analogy is no longer a useful way to look at ion channels at the research level. Now let us consider another analogy: that the channel acts like a ferroelectric material. To justify this juxtaposition of concepts, we must see if there are indeed significant similarities. At the same time, we must also look for any differences between the structures and behaviors of voltage-sensitive ion channels and ferroelectrics.

We have seen from the comparison of noise and admittance spectra in Chapter 11 that the behavior of excitable membranes is nonlinear, implying nonlinearity in the responses of voltage-sensitive ion channels. Other clues to nonlinearity are the generation of second and higher harmonics (Chapter 10, Figure 10.10) and the semicircles with depressed centers on Cole—Cole curves (Chapters 10 and 11). In this chapter we will explore a nonlinear mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes And References

  1. H. R. Leuchtag and V. S. Bystrov, Ferroel. 220:157–204, 1999 and references therein.

    Article  Google Scholar 

  2. Sidney B. Lang, Physics Today 58(8):31–36, August 2005.

    Article  Google Scholar 

  3. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1977, 144. Reprinted with permission from A. M. Glass, J. Appl. Phys. 40:4699. Copyright 1969, American Institute of Physics.

    Google Scholar 

  4. Lines and Glass, 1.

    Google Scholar 

  5. Copyright 1994 from Zenon Bochynski, Ferroel. 157:13–18, 1994. Reproduced by permission of Taylor & Francis Group, LLC., http://www.taylorandfrancis.com

  6. Lines and Glass, 103.

    Google Scholar 

  7. Robert E. Newnham, Structure—Property Relations, Springer-Verlag, New York, 1975, 94–101.

    Google Scholar 

  8. The difference between this equation and Equation 3.2 of Chapter 5 is due to a different sign convention.

    Google Scholar 

  9. Lines and Glass, 71–73.

    Google Scholar 

  10. Lines and Glass, 169–173. Reproduced from A. F. Devonshire, Advances in Physics 3:85, 1954 by permission of Taylor & Francis Ltd., http://www.informaworld.com

  11. Lines and Glass, 160–168.

    Google Scholar 

  12. Newnham, 93. With kind permission of Springer Science and Business Media.

    Google Scholar 

  13. Lines and Glass, 133–139.

    Google Scholar 

  14. Lines and Glass, 116; K.L. Bye, P.W. Whipps and E.T. Keve, Ferroel. 4: 253, 1972.

    Google Scholar 

  15. A. S. Davydov, Solitons in Molecular Systems, D. Reidel Publishing, Dordrecht, 1985, 219–226.

    MATH  Google Scholar 

  16. Helen D. Megaw,. Ferroelectricity in Crystals, Methuen, London, 1957, 32f.

    Google Scholar 

  17. Ennio Fatuzzo and Walter J. Merz , Ferroelectricity, North-Holland, Amsterdam, 1967, 233f; Lines and Glass, 111f.

    Google Scholar 

  18. R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics, North Holland, Amsterdam, 1974, 1–18.

    Google Scholar 

  19. Lines and Glass, 140; K. Gesi, J. Phys. Soc. Japan 28: 1365, 1970.

    Google Scholar 

  20. Newnham, 89–91. With kind permission of Springer Science and Business Media.

    Google Scholar 

  21. Lines and Glass, 293–321.

    Google Scholar 

  22. Minoru Fujimoto, The Physics of Structural Phase Transitions, Springer, New York, 1997, 55–59. With kind permission of Springer Science and Business Media.

    MATH  Google Scholar 

  23. Fujimoto, 191–201.

    Google Scholar 

  24. Fujimoto, 142–150; M. Quilinchini and J. Hlinka, Ferroel. 183:215–224, 1996.

    Google Scholar 

  25. Y. Makita, I. Seo and M. Sumita, J. Phys. Soc. Japan 28 (suppl.):268–270, 1970.

    Article  Google Scholar 

  26. G. Luther and H. E. MĂ¼ser, Z. angew. Phys. 29:237, 1970. With kind permission of Springer Science and Business Media.

    Google Scholar 

  27. A. I. Baranov, V. P. Khiznichenko, V. A. Sandler and L. A. Shuvalov, Ferroel. 81:183–186, 1988.

    Google Scholar 

  28. Copyright 1999 from S. Meschia, S. Lanceros-MĂ©ndez, A. ZidanÅ¡ek, V. H. Schmidt and R. Larsen, Ferroel. 226:159–167, 1999. Reproduced by permission of Taylor & Francis Group, LLC., http://www.taylorandfrancis.com

    Google Scholar 

  29. Copyright 1994 from Byoung-Koo Choi, Ferroel. 155:159–164, 1994. Reproduced by permission of Taylor & Francis Group, LLC., http://www.taylorandfrancis.com

    Google Scholar 

  30. V. M. Fridkin, Ferroelectric Semiconductors, Consultants Bureau, New York, 1980, vii–ix, 279–307, 9–11.

    Google Scholar 

  31. H. Athenstaedt, Naturwiss. 48:465–472, 1961.

    Article  ADS  Google Scholar 

  32. Herbert Athenstaedt, Ann. N. Y. Acad. Sci. 238:68–94, 1974.

    Article  ADS  Google Scholar 

  33. R. G. Kepler and R. A. Anderson, CRC Crit. Rev. Solid State Mat. Sci. 9:399–447, 1980.

    Article  Google Scholar 

  34. Eiichi Fukada, Quart. Rev. Biophys. 16:59–87, 1983.

    Article  Google Scholar 

  35. Freeman W. Cope, Bull. Math. Biol. 35:31–41, 1973.

    Google Scholar 

  36. Morris H. Shamos and Leroy S. Lavine, Nature 213:267–269, 1967.

    Article  Google Scholar 

  37. A. N. GĂ¼zelsu and A. Akçasu, Annals N. Y. Acad Sci. 238:339–351.

    Google Scholar 

  38. Xiao-xia Dong, Mark Ospeck and Kuni H. Iwasa, Biophys. J. 82:1254–1259, 2002.

    Article  Google Scholar 

  39. Sidney B. Lang, 10th Int. Symp. on Electrets, 175–182, 1999; S. B. Lang, A. A. Marino, G. Berkovic, M. Fowler, and K. D. Abreo, Bioelectrochem. Bioenerg. 41:191–195, 1996.

    Google Scholar 

  40. H. Athenstaedt, Naturwiss. 48,:465–472, 1961.

    Article  ADS  Google Scholar 

  41. P. Fong, Bull. Ga. Acad. Sci. 30:13–23, 1972.

    Google Scholar 

  42. A. R. von Hippel, J. Phys. Soc. Japan 28 (suppl.): 1–6, 1970.

    Article  Google Scholar 

  43. L. Y. Wei, Bulletin of Mathematical Biophysics 31:39–58, 1969.

    Article  Google Scholar 

  44. B. T. Matthias, in From Theoretical Physics to Biology, edited by M. Marois, Karger, Basel, 1973, 12– 21.

    Google Scholar 

  45. L. Rosenfeld, in From Theoretical Physics to Biology, 34.

    Google Scholar 

  46. V. F. Weisskopf, in From Theoretical Physics to Biology, 20.

    Google Scholar 

  47. S. P. Ionov and G. V. Ionova, Dokl. Biophys. 282:22–24, 1972.

    Google Scholar 

  48. A. Katchalsky, in From Theoretical Physics to Biology, 14–15.

    Google Scholar 

  49. H. Fröhlich, in From Theoretical Physics to Biology, 14–15; H. Fröhlich , Riv. Nuovo Cimento 7: 399– 418, 1977.

    Google Scholar 

  50. G. Eisenman and R. Margalit, in Proceedings of the Johnson Foundation's 50th Anniversary Conference, edited by J. S. Leigh, P. L. Dutton and A. Scarpa, Academic, New York, 1978, 1–11.

    Google Scholar 

  51. D. T. Edmonds in Biophysics of Water, edited by F. Franks, John Wiley, New York, 1982, 173–175.

    Google Scholar 

  52. D. T. Edmonds, personal communication.

    Google Scholar 

  53. H. R. Leuchtag and H. M. Fishman, in Structure and Function in Excitable Cells, edited by D.C. Chang, I. Tasaki, W. J. Adelman, Jr., and H. R. Leuchtag, Plenum, New York, 1983, 430.

    Google Scholar 

  54. H. R. Leuchtag, J. Theor. Biol. 127:321–340, 1987; 127: 341–359, 1987.

    Article  Google Scholar 

  55. H. R. Leuchtag, Ferroelectrics 86:105–113, 1988.

    Article  Google Scholar 

  56. A. G. Petrov, A. T. Todorov, B. Bonev, L. M. Blinov, S. V. Yablonski, D. B. Fubachyus, and N. Tvetkova, Ferroel. 114:415–427, 1991.

    Article  Google Scholar 

  57. L. A. Beresnev, S. A. Pikin and W. Haase, Condensed Matter News 1(8):13–18, 1992.

    Google Scholar 

  58. V. M. Gurevich, Electric Conductivity of Ferroelectrics, Israel Program for Scientific Translations, Jerusalem, 1971.

    Google Scholar 

  59. Copyright 1988 from H. R. Leuchtag, Ferroel. 86, 105–113, 1988 (Correction: For Win Equation 11 read w). Reproduced by permission of Taylor & Francis Group, LLC., http://www.taylorandfrancis.com

  60. H. R. Leuchtag, J. Theor. Biol. 127: 341–359, 1987; H. R. Leuchtag, Ferroel. 86:105113, 1988.

    Article  Google Scholar 

  61. M. S. Shur, Sov. Phys.-Solid State 10, 2087, 2827, 2925, 1969; —— Bull. Acad. Sci. USSR—Phys. Ser. 33, 187, 1969; E. V. Chenskii, Sov. Phys.-Solid State 11, 534, 1969.

    Google Scholar 

  62. H. R. Leuchtag, Proc., 1990 IEEE 7th Intern. Symp. On Applications of Ferroelectrics, IEEE, Piscataway, NJ, 1991, 279–283; H. R. Leuchtag, Proc., 1991 IEEE Northeast Bioeng. Conf., IEEE, Piscataway, NJ, 1991, 169–174.

    Google Scholar 

  63. Lines and Glass, 479–481; J. C. Burfoot and G. W. Taylor, Polar Dielectrics and their Applications, Univ. of California, Berkeley and Los Angeles, 1970.

    Google Scholar 

  64. H. R. Leuchtag, Proc., 1990 IEEE 7th Intern. Symp. On Applications of Ferroelectrics, IEEE, Piscataway, N.J., 1991, 279–283.

    Google Scholar 

  65. Reprinted from H. R. Leuchtag, Biophys. Chem. 53:197–205, copyright 1995, with permission from Elsevier.

    Google Scholar 

  66. Y. Palti and W. J. Adelman, Jr., J. Membr. Biol. 1:431–458, 1969.

    Article  Google Scholar 

  67. W. K. Chandler, A. L. Hodgkin and H. Meves, J. Physiol. 180: 821–836, 1965.

    Google Scholar 

  68. Lines and Glass, 629.

    Google Scholar 

  69. Fridkin, 41–98.

    Google Scholar 

  70. H.R. Leuchtag and V.S. Bystrov, Ferroel. 220:157–204, 1999.

    Article  Google Scholar 

  71. T. Mitsui, I. Tatsuzaki, and E. Nakamura, An Introduction to the Physics of Ferroelectrics , Gordon and Breach, New York, 1976; Lines and Glass, 169 f.

    Google Scholar 

  72. H. R. Leuchtag, Proc., 1990 IEEE 7th Intern. Symp. On Applications of Ferroelectrics, IEEE, Piscataway, N.J., 1991, 279–283.

    Book  Google Scholar 

  73. R. Guttman, in Biophysics and Physiology of Excitable Membranes, edited by W. J. Adelman, Jr., Van Nostrand Reinhold, New York, 1971, 320–336.

    Google Scholar 

  74. H. R. Leuchtag, Biophys. J. 66:217, 1994.

    Article  ADS  Google Scholar 

  75. Leuchtag and Bystrov, 1999.

    Google Scholar 

  76. Minoru Fujimoto, The Physics of Structural Phase Transitions, Springer, New York, 1997, 91–108.

    MATH  Google Scholar 

Download references

Editor information

H. Richard Leuchtag

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Polar Phases. In: Leuchtag, H.R. (eds) Voltage-Sensitive Ion Channels. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5525-6_16

Download citation

Publish with us

Policies and ethics