Skip to main content

The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil

  • Chapter
Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls

Abstract

Here we present the within-site, seasonal, and interannual variations of the carbon (δ13C) and nitrogen (δ15N) isotope ratios of leaves, wood, bark and litter from four sites in the Amazon region, Brazil. Samples were collected in Manaus (3° 06′07″ S; 60°01′30″ W), Ji-Paraná (10°53′07″ S; 61°57′06″ W), and Santarém (2°26′35″ S; 54°42′30″ W) with mean annual precipitation of 2207, 2040 and 1909 mm respectively. The overall average for all leaf samples was−32.3 ± 2.5‰ for δ13C and +5.8 ± 1.6‰ for δ15N (n = 756). The leaf δ values at these sites were often but not always statistically distinct from each other. The d13C values varied from−37.8‰ to−25.9‰ Pronounced differences in δ13C values occurred with height associated with differences in forest structure. The δ13C of leaf dry matter showed seasonal variations associated with the length of the dry season, despite the fact that total annual precipitation was similar among the studied sites. Leaf δ15N values ranged from+0.9‰ to a maximum value of+10.9‰, and the Santarém sites showed more enriched values than Manaus and Ji-Paraná sites. No seasonal variation was detected in the δ15N of leaves, but significant differences were observed among sites and with changes in canopy height. The isotope ratio data are consistent with our current understanding of the roles of light, water availability, and recycling of soil-respired CO2 influences on δ13C and consistent with our understanding that an open nitrogen cycle can lead to high δ15N values despite a significant number of legumes in the vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder D. and Silva J.N.M. 2000. An empirical cohort model for management of Terra Firme forests in Brazilian Amazon. Forest Ecol. Manage. 130: 141–157.

    Article  Google Scholar 

  • Amundson R., Austin A.T., Schuur E.A.G., Yoo K., Matzek V., Kendall C., Uebersax A., Brenner D. and Baisden W.T. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1): 1031 Doi: 10.1029/2002GB001903.

    Article  CAS  Google Scholar 

  • Araujo A.C., Nobre A.D., Kruijt B., Culf A.D., Stefani P., Elbers J., Dallarosa R., Randow C., Manzi A.O., Valentini R., Gash J.H.C. and Kabat P. 2002. Dual tower longterm study of carbon dioxide fluxes for a central Amazonian rain forest: The Manaus LBA site. J. Geophys. Res. Atmosph. 107(D20): 8090, doi: 10.1029/2001JD000676.

    Article  Google Scholar 

  • Austin A. and Vitousek P.M. 1998. Nutrient dynamics on a precipitation gradient. Oecologia 113: 519–529.

    Article  Google Scholar 

  • Bassow S.L. and Bazzaz F.A. 1997. Intra-and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 13: 507–515.

    Article  Google Scholar 

  • Berry S.C., Varney G.T. and Flanagan L.B. 1997. Leaf δ13C in Pinus resinosa trees and understory plants: variation associated with light and CO2 gradients. Oecologia 13: 499–506.

    Article  Google Scholar 

  • Bonal D., Barigah T.S., Graniers A. and Guehl J.M. 2000a. Late stage canopy tree species with extremely low δ13 C and hight stomatal sensitivity to seasonal soil drought in the tropical rain forest of French Guiana. Plant Cell Environ. 23: 445–459.

    Article  Google Scholar 

  • Bonal D., Sabatier D., Montpied P., Tremeaux D. and Guehl J.M. 2000b. Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124: 454–468.

    Article  Google Scholar 

  • Broadmeadow M.S.J. and Griffiths H. 1993. Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. In: Ehleringer J.R., Hall A.E. and Farquhar G.D. (eds), Stable Isotopes and Plant Carbon-Water Relations, Academic Press, San Diego, pp. 109–130.

    Google Scholar 

  • Broadmeadow M.S.J., Griffiths H., Maxwell C. and Borland A.M. 1992. The carbon isotope ratio of plant organic material reflects temporal and spatial variation in CO2 within tropical forest formations in Trinidad. Oecologia 89: 435–441.

    Google Scholar 

  • Buchmann N., Guehl J.M., Barigah T.S. and Ehleringer J.R. 1997. Interseasonal comparison of CO2 concentrations, isotopic composition and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110: 120–131.

    Article  Google Scholar 

  • Bustamante M.M.C., Martinelli L.A., Silva D.A., Camargo P.B., Klink C.A., Domingues T.F. and Santos R.V. 2004. δ13N natural abundance in woody plants and soils of central Brazilian savannas (cerrado). Ecol. Appl. 14(4): S200–S213 Suppl. S, AUG.

    Google Scholar 

  • Camargo P.B., Trumbore S., Martinelli L.A., Davidson E., Nepstad D. and Victoria R.L. 1999. Soil carbon dynamic in regroying forest in Eastern Amazonia. Global Change Biol. 5: 693–702.

    Article  Google Scholar 

  • Cuevas E. and Medina E. 1988. Nutrient dynamics within Amazonian forests. II fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76: 222–235.

    Article  Google Scholar 

  • Davidson E., Ishida F.Y. and Nepstad D.C. 2004. Effects of an Experimental Drought on Soil Emissions of Carbon Dioxide, Methane, Nitrous Oxide, and Nitric Oxide in a Moist Tropical Forest. Global Change Biol. v. 10.

    Google Scholar 

  • Donovan L.A. and Ehleringer J.R. 1992. Contrasting water-use patterns among size and life-history classes of a semi-arid shrub. Funct. Ecol. 6: 482–488.

    Article  Google Scholar 

  • Ehleringer J.R. and Monson R.K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Ann. Rev. Ecol. Systemat. 24: 411–439.

    Article  Google Scholar 

  • Ehleringer J.R., Bowling D.R., Flanagan L., Fessender J., Helliker B., Martinelli L.A. and Ometto J.P.H.B. 2002. Stable isotopes and carbon cycle in forests and grasslands. Plant Biol. 4: 181–189.

    Article  Google Scholar 

  • Ehleringer J.R., Field C.B., Lin Z.F. and Kuo C.Y. 1986. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70: 520–526.

    Article  Google Scholar 

  • Ehleringer J.R., Buchmann N. and Flanagan L.B. 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl. 10: 412–422.

    Google Scholar 

  • Evans R.D. and Ehleringer J.R. 1993. A break in the nitrogen cycle in aridlands? Evidence from δ13N of soils. Oecologia 94: 314–317.

    Article  Google Scholar 

  • Evans R.D. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends plant science 6(3): 121–126.

    Article  CAS  Google Scholar 

  • Farquhar G.D., Ehleringer J.R. and Hubick K.T. 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537.

    Article  CAS  Google Scholar 

  • Farquhar G.D., O’Leary M.H. and Berry J.A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 121–137.

    CAS  Google Scholar 

  • Fessenden J.E. and Ehleringer J.R. 2002. Age dependent variations in the δ13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest. Tree Physiol. 22: 159–167.

    PubMed  CAS  Google Scholar 

  • Field C.B., Behrenfeld M.J., Randerson J. and Falkowski 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Fisch G., Marengo J.M. and Nobre C.A. 1998. Uma revisão geral sobre o clima na Amazônia. Acta Amazonica 28(2): 101–126.

    Google Scholar 

  • Gash J.H.C., Huntingford C., Marengo J.A., Betts R.A., Cox P.M., Fisch G., Fu R., Gandu A.W., Harris P.P., Machado L.A.T., von Randow C. and Silva Dias M.A. 2004. Amazonian climate: results and future research. Theor. Appl. Climatol. 78: 187–193, LBA Special Issue.

    Google Scholar 

  • Gebauer G. and Schulze E.D. 1991. Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87: 198–207.

    Article  Google Scholar 

  • Gehring C. 2003. The Role of Biological Nitrogen Fixation in Secondary and Primary Forests of Central Amazonia Doctoral Dissertation. Faculty of Agriculture Rheinische Friedrich-Wilhelm-Universität Bonn, Germany.

    Google Scholar 

  • Goulden M.L., Miller S.D., Rocha H.R., Menton M.C., Freitas H.C., Figueira A.M.S. and Souza C.A.D. 2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 14: S42–S54.

    Google Scholar 

  • Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Moncrieff J., Massheder J., Wright I. and Gash J. 1995b. Fluxes of carbon dioxide and water vapor over an undisturbed tropical forest in south-west Amazonia. Global Change Biol. 1: 1–12.

    Article  Google Scholar 

  • Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Nobre C., Moncrieff J., Massheder J., Malhi Y., Wright I. and Gash J. 1995a. Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992–1993. Science 270: 778–780.

    Article  CAS  Google Scholar 

  • Grace J., Malhi Y., Lloyd J., McIntyre J., Miranda A.C., Meir P. and Miranda H.S. 1996. The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biol. 2: 208–217.

    Article  Google Scholar 

  • Guehl J.M., Domenach A.M., Bereau M., Barigah T.S., Casabianca H., Ferhi A. and Garbaye J. 1998a. Functional diversity in an Amazonian rainforest of French Guyana: a dual isotope approach (δ13N and δ13C). Oecologia 116(3): 316–330, SEP.

    Article  Google Scholar 

  • Guehl J.M., Domenach A.M., Bereau M., Barigah T.S., Casabianca H., Ferhi A. and Garbaye J. 1998b. Functional diversity in an Amazonian rainforest of French Guyana. A dual isotope approach (δ13N and δ13C). Oecologia 116: 316–330.

    Article  Google Scholar 

  • Handley L., Austin A., Robinson D., Scrimgeour C., Raven J., Heaton T., Schmidt S. and Stewart G. 1999. The 15-N natural abundance (δ13N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Phys. 26: 185–199.

    Article  Google Scholar 

  • Higuchi N., Santos J., Ribeiro R.J., Minette L. and Biot Y. 1998. Biomassa da parte aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazônica 28: 153–166.

    Google Scholar 

  • Hodnett M.G., Oyama M.D., Tomazella J. and Marques Filho A.O. 1996. Comparisons of long term soil water storage behavior under pasture and forest in three areas of Amazonia. In: Gash J.H.C., Nobre C.A., Roberts J.M. and Victoria R.L. (eds), Amazonian Deflorestation and Climate, John Wiley & Sons, Chichester, U.K, pp. 79–100.

    Google Scholar 

  • Högberg P. and Johannisson C. 1993. δ13N abundance of forests is correlated with losses of nitrogen. Plant Soil 157: 147–150.

    Google Scholar 

  • Högberg P. 1990. 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 115: 483–486.

    Article  Google Scholar 

  • Hogberg P. 1997. 15N natural abundance in soil-plant systems. New Phytol 137: 179–203.

    Article  Google Scholar 

  • Jackson P.C., Meinzer F.C., Goldstein G., Holbrook N.M., Cavelier J. and Rada F. 1993. Environmental and physiological influences on carbon isotope composition of gap and understorey plants in a lowland tropical forest. In: Ehleringer J.R., Hall A.E. and Farquhar G.D. (eds), Stable Isotopes and Plant Carbon-Water Relations, Academic Press, San Diego, pp. 131–140.

    Google Scholar 

  • Kapos V., Ganade G., Matsui E. and Victoria R.L. 1993. δ13C as an indicator of edge effects in tropical rain forest reserves. J. Ecol. 81: 425–432.

    Article  Google Scholar 

  • Kruijt B., Lloyd J., Grace J., McIntyre J., Farquhar G.D., Miranda A.C. and McCracken P. 1996. Sources and sinks of CO2 in Rondonian tropical forest, inferred from concentrations and turbulence along a vertical gradient. In: Gash J.H.C., Nobre C.A., Roberts J.M. and Victoria R.L. (eds), Amazonian Deflorestation and Climate, John Wiley & Sons, Chichester, U.K, pp. 331–351.

    Google Scholar 

  • Leffler Aj. and Enquist Bj 2002. Carbon isotope composition of tree leaves from Guanacaste, Costa Rica: comparison Across tropical forests and tree life history. J. Trop. Ecol. 18: 151–159.

    Article  Google Scholar 

  • Lloyd J., Grace J., Miranda A.C., Meir P., Wong S.C., Miranda H.S., Wright I.R., Gash J.H.C. and McIntyre J. 1996. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell Environ. 18: 1129–1145.

    Article  Google Scholar 

  • Luizão R.C.C., Luizão F.J., Paiva R.Q., Monteiro T.F., Sousa L.S. and Kruijt B. 2004. Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biol. 10: 592–600, doi: 10.1111/j.1529-8817.2003.00757.x.

    Article  Google Scholar 

  • Malhi Y., Baldocchi D.D. and Jarvis P.G. 1999. The carbon balance of tropical, temperate and boreal forests. Plant, Cell Environ. 22: 715–740.

    Article  CAS  Google Scholar 

  • Marengo J.A. and Hastenrath S. 1993. Case studies of climatic events in Amazon basin. J. Climate 6(4): 617–627.

    Article  Google Scholar 

  • Marengo J.A. 1992. Interannual variability of surface climate in the Amazon basin. J. Climatol. 12(8): 853–863.

    Google Scholar 

  • Martinelli L.A., Almeida S., Brown I.F., Moreira M.Z., Victoria R.L., Sternberg L.S.L., Ferreira C.A.C. and Thomas W.W. 1998. Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondônia, Brazil. Oecologia 114: 170–179.

    Article  Google Scholar 

  • Martinelli L.A., Piccolo M.C., Townsend A.R., Vitousek P.M., Cuevas E., Mcdowell W., Robertson G.P., Santos O.C. and Treseder K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46(1–3): 45–65.

    CAS  Google Scholar 

  • McKey D. 1994. Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent J.I. and McKey D. (eds), Advances in Legume Systematics 5: The Nitrogen Factor, Royal Botanic Gardens, Kew, UK, pp. 221–228.

    Google Scholar 

  • Medina E. and Minchin P. 1980. Stratification of δ13C values of leaves in Amazonian rainforests. Oecologia 45: 355–378.

    Article  Google Scholar 

  • Medina E., Sternberg L. and Cuevas E. 1991. Vertical stratification of δ13C values in closed and natural plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87: 369–372.

    Article  Google Scholar 

  • Meints V.W., Boone L.V. and Kurtz L.T. 1975. Natural 15N abundance in soil, leaves, and grain as influenced by long term additions of fertilizer N at several rates. J. Environ. Qual. 4: 486–490.

    Article  CAS  Google Scholar 

  • van der Merwe N.J. and Medina E. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta 53: 1091–1094.

    Article  Google Scholar 

  • Miller S.D., Goulden M.L., Menton M.C., Rocha H.R., Freitas H.C., Figueira A.M.S. and Sousa C.A.D. 2004. Biometric and Micrometeorological Measurements of Tropical Forest Carbon Balance. Ecol. Appl. 14(4): S114–S126 Supplement.

    Google Scholar 

  • Moreira de Souza F.M., da Silva M.F. and de Faria S.M. 1992. Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol. 121: 563–570.

    Article  Google Scholar 

  • Natelhoffer K.J. and Fry B. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Soc. Am. J. 52: 1633–1640.

    Article  CAS  Google Scholar 

  • Obregon G. and Nobre C.A. 1990. Principal component analysis of precipitation fields over Amazon river basin. Climanálise 5(7): 35–46.

    Google Scholar 

  • Ometto J.P.H.B., Flanagan L., Martinelli L.A., Moreira M.Z., Higuchi N. and Ehleringer J.R. 2002. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochem. Cycles 16: 1109.

    Article  CAS  Google Scholar 

  • Panek J.A. 1996. Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA. Tree Physiol. 16(9): 747–755.

    PubMed  CAS  Google Scholar 

  • Robinson D. 2001. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16: 153–162.

    Article  PubMed  Google Scholar 

  • Roggy J.C., Preâvost M.F., Garbaye J. and Domenach A.M. 1999. Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using d15N. J. Trop. Ecol. 15: 1–22.

    Article  Google Scholar 

  • Roggy J.C., Prevost M.F., Gourbiere F., Casabianca H., Garbaye J. and Domenach A.M. 1999. Leaf natural “δNabundance and total Nconcentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120: 171–182.

    Article  Google Scholar 

  • Saleska S.R., Miller S.D., Matross D.M., Goulden M.L., Wofsy S.C., da Roacha H.R., de Camargo P.B., Crill P., Daube B.C., de Freitas H.C., Hutyra L., Keller M., Kirchoff V., Menton M., Munger J.W., Pyle E.H., Rice A.H. and Silva H. 2003. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302: 1554–1557.

    Article  PubMed  CAS  Google Scholar 

  • Schimel D.S. 1995. Terrestrial ecosystems and the carbon-cycle. Global Change Biol. 1: 77–91.

    Article  Google Scholar 

  • Souza L.A.G., de Silva M.F. and da und Moreira F.W. 1994. Capacidade de nodulação de cem Leguminosas da Amazônia. Acta Amazônica 24(1/2): 9–19.

    Google Scholar 

  • Sprent J.I. 1995. Legume trees and shrubs in the tropics: N2 fixation in perspective. Soil Biol. Biochem. 7: 401–407.

    Article  Google Scholar 

  • Sternberg L.S.L., Mulkey S.S. and Wright S.J. 1989. Ecological interpretation of leaf isotope ratios: influence of respired carbon dioxide. Ecology 70: 1317–1324.

    Article  Google Scholar 

  • Stewart G.R., Joly A.C. and Smirnoff N. 1992. Partitioning of inorganic nitrogen assimilation between roots and shoots of cerrado and forest trees of contrasting plant communities of South East Brazil. Oecologia 91: 511–517.

    Article  Google Scholar 

  • Sylvester-Bradley R., Oliveira L.A., Podestá Filho J.A. and St. John T.V. 1980. Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum spp. in representative soils of Central Amazonia. Agro-Ecosystems 6: 249–266.

    Article  Google Scholar 

  • Telles E.C.C., de Camargo P.B., Martinelli L.A., Trumbore S.E., da Costa E.S., Santos J., Higuchi N. and Oliveira Jr R.O. 2003. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochem. Cycles 17–1040 doi: 10.1029/2002GB001953.

    Google Scholar 

  • Vieira S., Camargo P.B., Selhorst D., Silva R., Hutyra L., Chambers J.Q., Brown I.F., Higuchi N., Santos J., Wofsy S.C., Trumbore S.E. and Martinelli L.A. 2004. Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 140: 468–479, doi: 10.1007/s00442-004-1598-z.

    Article  PubMed  Google Scholar 

  • Vitousek P.M, Cassman K., Cleveland C., Crews T., Field C.B., Grimm N.B., Howarth R.W., Marino R., Martinelli L., Rastetter E.B., Sprent J.I. (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57/58: 1–45.

    Article  CAS  Google Scholar 

  • Walcroft A.S., Silvester W.B., Grace J.C., Carson S.D. and Waring R.H. 1996. Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiol. 16: 281–286.

    PubMed  Google Scholar 

  • Walcroft A.S., Whitehead D., Silvester W.B. and Kelliher F.M. 1997. Determination of photosynthetic model parameters in response to temperature and nitrogen concentration in Pinus radiata D. Don. Plant, Cell Environ. 20: 1338–1348.

    Article  CAS  Google Scholar 

  • Yoneyama T., Muraoka T., Murakami T. and Boonkerd N. 1993. Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153: 295–304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Ometto, J.P.H.B. et al. (2006). The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. In: Martinelli, L.A., Howarth, R.W. (eds) Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5517-1_12

Download citation

Publish with us

Policies and ethics