Skip to main content

MODELING OF LIGHT SCATTERING FROM INHOMOGENEOUS BIOLOGICAL CELLS

  • Conference paper
Optics of Biological Particles

Part of the book series: NATO Science Series ((NAII,volume 238))

Abstract

This chapter describes the results of a finite-difference time-domain model of light scattering from inhomogeneous biological cells. The FDTD approach enables realistic three-dimensional modeling of light scattering from cells. The effects of small cytoplasmic organelles and nuclear morphology on the angular distribution of scattered light are examined. The results suggest that the small-scale refractive-index variations found in small cytoplasmic organelles and within the nucleus largely determine the scattering properties of cells at larger scattering angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. (1989). Molecular biology of the cell. Garland Publishing, New York.

    Google Scholar 

  • Barer, R. and Joseph, S. (1954). Refractometry of living cells. Quarterly Journal of Microscopical Science, 95:399–423.

    Google Scholar 

  • Barer, Robert (1957). Refractometry and interferometry of living cells. Journal of the Optical Society of America, 47:545–556.

    Article  ADS  Google Scholar 

  • Bereiter-Han, J., Fox, C., and Thorell, B. (1979). Quantitative reflection contrast microscopy of living cells. Journal of Cell Biology, 82:767–779.

    Article  Google Scholar 

  • Berenger, Jean-Pierre (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114:185–200.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Beuthan, J., Minet, O., Helfman, J., and Muller, G. (1996). The spatial variation of the refractive index in biological cells. Physics in Medicine and Biology, 41:369–382.

    Article  ADS  Google Scholar 

  • Brunsting, A. and Mullaney, P. (1974). Differential light scattering from spherical mammalian cells. Biophysical Journal, 14:439–453.

    Article  ADS  Google Scholar 

  • Dunn, A. and Richards-Kortum, R. (1996). Three-dimensional computation of light scattering from cells. IEEE Journal of Special Topics in Quantum Electronics, 2:898–905.

    Article  Google Scholar 

  • Kohl, M. and Cope, M. (1994). Influence of glucose concentration on light scattering in tissue. Optics Letters, 17:2170–2172.

    Article  ADS  Google Scholar 

  • Lanni, F., Waggoner, A., and Taylor, D. (1985). Internal reflection fluorescence microscopy. Journal of Cell Biology, 100:1091.

    Article  Google Scholar 

  • Liao, Z.P.,Wong, H.L., Yang, B.P., and Yuan, Y.F. (1984). A transmitting boundary for transient wave analysis. Sci. Sin., Ser. A, 27:1063–1076.

    MATH  Google Scholar 

  • Liu, H., Beauvoit, B., Kimura, M., and Chance, B. (1996). Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. Journal of Biomedical Optics, 1:200–211.

    Article  ADS  Google Scholar 

  • Taflove, Allen (1995). Computational electrodyamics: the finite-difference time-domain method. Artech House.

    Google Scholar 

  • Vitkin, I., Woolsey, J., Wilson, B., and Anderson, R. (1994). Optical and thermal characterization of natural (sepia oficinalis) melanin. Photochemistry and Photobiology, 59:455–462.

    Article  Google Scholar 

  • Yee, K. (1966). Numerical solutions of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, AP-14:302–307.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Dunn, A.K. (2007). MODELING OF LIGHT SCATTERING FROM INHOMOGENEOUS BIOLOGICAL CELLS. In: Hoekstra, A., Maltsev, V., Videen, G. (eds) Optics of Biological Particles. NATO Science Series, vol 238. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5502-7_2

Download citation

Publish with us

Policies and ethics