Skip to main content

DISTRIBUTION MODULO ONE AND RATNER’S THEOREM

  • Conference paper
Equidistribution in Number Theory, An Introduction

Part of the book series: NATO Science Series ((NAII,volume 237))

Abstract

Measure rigidity is a branch of ergodic theory that has recently contributed to the solution of some fundamental problems in number theory and mathematical physics. Examples are proofs of quantitative versions of the Oppenheim conjecture (Eskin et al., 1998), related questions on the spacings between the values of quadratic forms (Eskin et al., 2005; Marklof, 2003; Marklof, 2002), a proof of quantum unique ergodicity for certain classes of hyperbolic surfaces (Lindenstrauss, 2006), and an approach to the Littlewood conjecture on the nonexistence of multiplicatively badly approximable numbers (Einsiedler et al., 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Einsiedler, M., Katok, A., and Lindenstrauss, E. (2006) Invariant measures and the set of exceptions to Littlewoods conjecture, Ann. of Math. (2), to appear.

    Google Scholar 

  • Elkies, N. D. and McMullen, C. T. (2004) Gaps in √n mod 1 and ergodic theory, Duke Math. J. 123, 95–139.

    Article  MATH  MathSciNet  Google Scholar 

  • Eskin, A., Margulis, G., and Mozes, S. (1998) Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2) 147, 93–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Eskin, A., Margulis, G., and Mozes, S. (2005) Quadratic forms of signature (2, 2) and eigenvalue spacings on rectangular 2-tori, Ann. of Math. (2) 161, 679–725.

    MATH  MathSciNet  Google Scholar 

  • Kleinbock, D. (1999) Badly approximable systems of affine forms, J. Number Theory 79, 83–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Lindenstrauss, E. (2006) Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163, 165–219.

    MATH  MathSciNet  Google Scholar 

  • Marklof, J. (2000) The n-point correlations between values of a linear form, with an appendix by Z. Rudnick, Ergodic Theory Dynam. Systems 20, 1127–1172.

    Article  MATH  MathSciNet  Google Scholar 

  • Marklof, J. (2002) Pair correlation densities of inhomogeneous quadratic forms II, Duke Math. J. 115, 409–434, Correction, ibid. 120 (2003) 227–228.

    Article  MATH  MathSciNet  Google Scholar 

  • Marklof, J. (2003) Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math. (2) 158, 419–471.

    MATH  MathSciNet  Google Scholar 

  • Marklof, J. (2006) Energy level statistics, lattice point problems and almost modular functions, In P. Cartier, B. Julia, P. Moussa, and P. Vanhove (eds.), Frontiers in Number Theory, Physics and Geometry. Volume 1: On random matrices, zeta functions and dynamical systems, pp. 163–181, Springer.

    Google Scholar 

  • Morris, D.W. (2005) Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, Chicago, IL, University of Chicago Press.

    Google Scholar 

  • Rudnick, Z. and Sarnak, P. (1998) The pair correlation function of fractional parts of polynomials, Comm. Math. Phys. 194, 61–70.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudnick, Z. and Zaharescu, A. (2002) The distribution of spacings between fractional parts of lacunary sequences, Forum Math. 14, 691–712.

    Article  MATH  MathSciNet  Google Scholar 

  • Shah, N. A. (1996) Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci., Math. Sci. 106, 105–125.

    MATH  MathSciNet  Google Scholar 

  • Slater, N. B. (1967) Gaps and steps for the sequence mod 1, Proc. Cambridge Philos. Soc. 63, 1115–1123.

    MATH  MathSciNet  Google Scholar 

  • Strömbergsson, A. and Venkatesh, A. (2005) Small solutions to linear congruences and Hecke equidistribution, Acta Arith. 118, 41–78.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Marklof, J. (2007). DISTRIBUTION MODULO ONE AND RATNER’S THEOREM. In: Granville, A., Rudnick, Z. (eds) Equidistribution in Number Theory, An Introduction. NATO Science Series, vol 237. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5404-4_11

Download citation

Publish with us

Policies and ethics