Skip to main content

Principles of ESR

  • Chapter
  • First Online:
Principles and Applications of ESR Spectroscopy

Abstract

The ESR (electron spin resonance) method is employed for studies of paramagnetic substances most commonly in liquids and solids. A spectrum is obtained in continuous wave (CW) ESR by sweeping the magnetic field. The substances are characterized by measurements of the g-factor at the centre of the spectrum and of line splittings due to hyperfine structure from nuclei with spin I ≠ 0. Zero-field splitting (or fine structure) characteristic of transition metal ion complexes and other substances with two or more unpaired electrons (S ≥ 1) can be observed in solid samples. Concentration measurements with the CW-ESR method are common in other applications. High field and multi-resonance (e.g. ENDOR) methods employed in modern applications improve the resolution of the g-factor and of the hyperfine couplings, respectively. Pulse microwave techniques are used for measurements of dynamic properties like magnetic relaxation but also for structural studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Weil, J.R. Bolton: ‘Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd Edition, J. Wiley, New York (2007).

    Google Scholar 

  2. E. Zavoisky: J. Phys. USSR 9, 211 (1945).

    Google Scholar 

  3. M.S. Bagguley, B. Bleaney, J.H.E. Griffiths, R.P. Penrose, B.I. Plumpton: Proc. Phys. Soc. 61, 542 (1948).

    Article  CAS  Google Scholar 

  4. R.P. Penrose: Nature 163, 992 (1949).

    Article  CAS  Google Scholar 

  5. A.A. Galkin, O.Ya. Grinberg, A.A Dubinskii, N.N. Kabdin, V.N. Krimov, V.I. Kurochkin, Ya.S. Lebedev, L.G. Oranskii, V.F. Shovalov: Instrum. Exp. Tech. (Eng. Transl.) 20, 284 (1977).

    Google Scholar 

  6. G. Feher: Phys. Rev. 103, 500 (1956).

    Article  CAS  Google Scholar 

  7. R.W. Fessenden, R.H. Schuler: J. Chem. Phys. 33, 935 (1960).

    Article  CAS  Google Scholar 

  8. A.D. Trifunac, J.R. Norris, R.G. Lawler: J. Chem. Phys. 71, 4380 (1979).

    Article  CAS  Google Scholar 

  9. K.A. McLauchlan: In ‘Foundations of modern EPR’ ed. by G. Eaton, S.S. Eaton, K.M. Salikhov, World Scientific, Singapore (1998).

    Google Scholar 

  10. R.C. Bray: J. Biochem. 81, 189 (1961).

    CAS  Google Scholar 

  11. C. Lagercrantz, S. Forshult: Nature 218, 1247 (1968).

    Article  CAS  Google Scholar 

  12. G.R. Chalfront, M.J. Perkins, A. Horsfield: J. Am. Chem. Soc. 90, 7141 (1968).

    Article  Google Scholar 

  13. E.G. Janzen, B.J. Blackburn: J. Am. Chem. Soc. 91, 4481 (1969).

    Article  CAS  Google Scholar 

  14. W.B. Mims Phys: Rev. B 5, 2409 (1972).

    Article  Google Scholar 

  15. J.R. Pilbrow: ‘Transition Ion Paramagnetic Resonance’, Clarendon Press, Oxford (1990).

    Google Scholar 

  16. F. Gerson: Hochauflösende ESR-spektroskopie dargestellt anhand aromatischer Radikal-Ionen’, Verlag Chemie, Weinheim (1967).

    Google Scholar 

  17. K. Scheffler, H.B. Stegmann: ‘Elektronenspinresonanz, Grundlagen und Anwendung in der organischen Chemie’, Springer-Verlag, Berlin (1970).

    Google Scholar 

  18. J.A. Pedersen: ‘Handbook of EPR Spectra from Natural and Synthetic Quinones and Quinols’, CRC Press, Boca Raton, FL (1985).

    Google Scholar 

  19. H. Kurreck, B. Kirste, W. Lubitz: ‘Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution - Application to Organic and Biological Chemistry’, VCH publishers, Weinheim (1988).

    Google Scholar 

  20. H.B. Box: ‘Radiation effects, ESR and ENDOR analysis’, Academic Press, New York (1977).

    Google Scholar 

  21. P.W. Atkins, M.C.R. Symons: ‘The structure of inorganic radicals. An application of ESR to the study of molecular structure’, Elsevier publishing company, Amsterdam (1967).

    Google Scholar 

  22. S.Ya. Pshezhetskii, A.G. Kotov, V.K. Milinchuk, V.A. Roginski, V.I. Tupilov: ‘EPR of free radicals in radiation chemistry’, John Wiley & Sons, New York (1974).

    Google Scholar 

  23. A. Lund, M. Shiotani (eds.): ‘Radical Ionic systems’, Kluwer academic publishers, Dordrecht (1991).

    Google Scholar 

  24. A. Lund, C. Rhodes (eds.): ‘Radicals on surfaces’, Kluwer academic publishers, Dordrecht (1995).

    Google Scholar 

  25. A. Lund, M. Shiotani (eds.): ‘EPR of Free Radicals in Solids’, Kluwer academic publishers, Dordrecht (2003).

    Google Scholar 

  26. H.B. Rånby, J.F. Rabek: ‘ESR spectroscopy in polymer research’, Springer-Verlag, Berlin (1977).

    Book  Google Scholar 

  27. S. Schlick (ed.): ‘Advanced ESR Methods in Polymer Research’, Wiley, Hoboken, NJ (2006).

    Google Scholar 

  28. B. Halliwell, J.C. Gutteridge: ‘Free Radicals in Biology and Medicine’, Third Ed., Oxford Univ. Press (1999).

    Google Scholar 

  29. A. Schweiger, G. Jeschke: ‘Principles of pulse electron paramagnetic resonance’, Oxford University Press, New York (2001).

    Google Scholar 

  30. S.A. Dikanov, Yu.D. Tsvetkov: ‘Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy) ’ CRC Press, Inc. - Boca Raton, FL (1992).

    Google Scholar 

  31. Electron paramagnetic resonance’, Royal Society of Chemistry, Vol. 1 (1973) to 21 (2008) Thomas Graham House, Cambridge UK.

    Google Scholar 

  32. H. Fischer (ed.): ‘Landolt-Börnstein, Numerical data and functional relationships in science and technology: Magnetic properties of free radicals’, Springer-Verlag, Berlin (1965-89).

    Google Scholar 

  33. P.H. Rieger: ‘Electron Spin Resonance: Analysis and Interpretation’, RSC Publishing, Cambridge, UK (2007).

    Google Scholar 

  34. M. Brustolon, E. Giamello (eds.): ‘Electron Paramagnetic Resonance: A Practitioner’s Toolkit’, Wiley, Hoboken, NJ (2009).

    Google Scholar 

  35. J. Yamauchi: ‘Magnetic Resonance - ESR: Spectroscopy of Electron Spin’, Saiensu Sya (2006). (In Japanese)

    Google Scholar 

  36. Japanese Society of SEST: ‘Introduction to Electron Spin Science and Technology’, Nihon Gakkai Jimu Center (2003). (In Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lund .

Exercises

Exercises

  1. E1.1

    Naturally occurring chemical substances are in general diamagnetic. (a) Which of the substances CO, NO, CO2, and NO2 might be paramagnetic? (NO is a special case, see Chapter 6.) (b) Can any of the hydrocarbon species shown below be paramagnetic? Can ions of the species be paramagnetic?

  2. E1.2

    Ions of organic compounds have been extensively studied by ESR as discussed in Chapter 5.

    1. (a)

      The spin density is equally distributed over the carbon atoms of the cyclo-octatetraene anion radical. What is the expected hyperfine pattern (number and intensities of hyperfine lines due to hydrogen)?

    2. (b)

      Hyperfine couplings due to three groups of protons were observed from the radical cation produced by the treatment of anthracene with SbCl5 in liquid solution. The coupling constants were 6.44, 3.08 and 1.38 G, respectively [L.C. Lewis, L.S. Singer: J. Chem. Phys. 43, 2712 (1965)]. Assign the couplings to specific positions using the Hückel spin densities given below.

  3. E1.3

    The anisotropic hyperfine coupling of the NO3 radical trapped in a nitrate salt was found to be axially symmetric, A || = a + 2b, A = ab, with a = 0.7 G, b = 0.7 G [21]. The radical is assumed to be planar.

    1. (a)

      Estimate the spin density in the nitrogen 2pz orbital with its axis (z) perpendicular to the plane, the spin density at the nitrogen nucleus, and the total spin density on nitrogen by a procedure analogous to that in Section 1.5.3.

    2. (b)

      Estimate the spin density on the oxygen atoms by assuming that they are equivalent and that ρ(N) + 3· ρ(C) = 1.

  4. E1.4

    Consider the influence of the microwave frequency on the spectrum in Fig. 1.7 showing fine structure or zero-field splitting (zfs).

    1. (a)

      Would it be possible to directly measure the zero-field splitting with a microwave frequency that is 1/3 of that in the figure, for instance by measuring at S- rather than at X-band?

    2. (b)

      Do“first order”conditions strictly apply for the spectrum in Fig. 1.7? (The spectrum is first order when 2·D << hν in energy units or 2·D << B g in field units. The zfs can then be directly measured as shown in the figure.) Suggest an experimental method to satisfy this condition. (A theoretical procedure was applied to obtain the zfs of excited naphthalene in the S = 1 triplet state at an early stage, [H. van der Waals, M.S. de Groot: Mol. Phys. 2, 333 (1959)].

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lund, A., Shiotani, M., Shimada, S. (2011). Principles of ESR. In: Principles and Applications of ESR Spectroscopy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5344-3_1

Download citation

Publish with us

Policies and ethics