Skip to main content

SOMACLONAL VARIATION AS A SOURCE OF TOMATO SPOTTED WILT VIRUS-RESISTANCE IN PLANTS

  • Conference paper
Virus Diseases and Crop Biosecurity

Part of the book series: NATO Security through Science Series ((NASTC))

Abstract

Tomato spotted wilt virus (TSWV) is the type species of the plant-infecting Tospovirus genus within the arthropod-borne Bunyaviridae family (van Regenmortel et al., 2000; Fauquet et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, S., R. Quadt, T.J. Choi, P. Ahlquist, and T. German, 1995. An RNA-dependent RNA polymerase activity associated with virions of tomato spotted wilt virus, a plant- and insect-infecting bunyavirus, Virology, 207, 308–311.

    Article  PubMed  CAS  Google Scholar 

  • Barden, K.A., S. Schiller, and N.N. Murakishi, 1986. Regeneration and screening of tomato somaclones for resistance to tobacco mosaic virus, Plant Sci., 45, 209–213.

    Article  Google Scholar 

  • Brommenschenkel, S.H. and S.D. Tanksley, 1997. Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato, Mol. Gen. Genet., 256, 121–126.

    Article  Google Scholar 

  • Brunt, A.A., K. Crabtree, M.J. Dallwitz, A.J. Gibbs, L. Watson, and E.J. Zurcher, 1996. Plant Viruses Online: Descriptions and Lists from the VIDE Database, Version: 20 Aug. 1996.

    Google Scholar 

  • Bucher, E., T. Sijen, P. De Haan, R. Goldbach, and M. Prins, 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions, J. Virol., 77, 1329–1336.

    Article  PubMed  CAS  Google Scholar 

  • Caner, J., M. Amelia, V. Alexandre, and M. Vicente, 1984. Effect of tiazofurin on tomato plants infected with tomato spotted wilt virus, Antiviral Res., 4, 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Comeau, A., and A. Plourde, 1987. Cell, tissue culture and intergeneric hybridization for barley yellow dwarf virus resistance in wheat, Can. J. Plant Pathol., 9, 188–192.

    Article  Google Scholar 

  • Czech, A.S., M. Szklarczyk, Z. Gajewski, E. Zukowska, B. Michalik, T. Kobylko and K. Strzalka, 2003. Selection of tomato plants resistant to a local Polish isolate of tomato spotted wilt virus (TSWV), J. Appl. Genet., 44, 473–480.

    PubMed  Google Scholar 

  • De Fazio, G., J. Caner, and M. Vicente, 1980. Effect of virazole (ribavirin) on tomato spotted wilt virus in two systemic hosts, tomato and tobacco, Arch. Virol., 63, 305–309.

    Article  PubMed  Google Scholar 

  • De Fazio, G., and M. Kudamatsu, 1983. Inhibitory effect of Distamycin-A and a pyrazino-pyrazine derivative on tomato spotted wilt virus, Antiviral Res., 3, 109–113.

    Article  PubMed  Google Scholar 

  • Fauquet, C.M., M.A. Mayo, J. Maniloff, U. Desselberger, and L.A. Ball, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses, Elsevier Academic Press, Amsterdam, 1259 pp.

    Google Scholar 

  • Foroughi-Wehr, B., and W. Friedt, 1984. Rapid production of recombinant barley yellow mosaic virus resistant Hordeum vulgare lines by anther culture, Theor. Appl. Genet., 67, 377–382.

    Article  Google Scholar 

  • Gielen, J.J.C., P. de Haan, A.J. Kool, D. Peters, M.Q.V.N. Van Grinsven, and R.W. Goldbach, 1991. Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus, Biotechnology, 9, 1363–1367.

    Article  CAS  Google Scholar 

  • Jahn. M., I. Paran, K. Hoffmann, E.R. Radwanski, K.D. Livingstone, R.C. Grube, E. Aftergoot, M. Lapidot, and J. Moyer, 2000. Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato, Mol. Plant Microbe Interact., 13, 673–682.

    PubMed  CAS  Google Scholar 

  • Jellis, G.J., R.E. Gunn, and R.E. Boulton, 1984. Variation in disease resistance among potato somaclones, edited by F.A. Winiger and A. Stockly, Abstr. Conf. Pap. Triennal Conf EAPR, Interlaken, EAPR, Wageningen, pp. 380–381.

    Google Scholar 

  • Jones, R.A.C., 2004. Using epidemiological information to develop effective integrated virus disease management strategies, Virus Res. 1, 5–30.

    Article  CAS  Google Scholar 

  • Kormelink. R., E.W. Kitajima, P. de Haan, D. Zuidema, D. Peters, and R. Goldbach, 1994. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells, Virology, 181, 459–468.

    Article  Google Scholar 

  • Kovalenko, A.G., I.S. Shcherbatenko, L.T. Oleshchenko, E.A. Rud, and N.I. Strelaeva, 1989. The production of fertile somaclones of interspecific tobacco hybrids with high resistance to tomato spotted wilt virus, Cytol Genet, 24, 59–65.

    Google Scholar 

  • Krishnamurthi, M., and J. Thaskal, 1974. Fiji disease resistant Saccharum officinarum var. Pindar subclones from tissue cultures, Proc. Int. Soc. Sugarcane Technol., 15, 130–137.

    Google Scholar 

  • Liu, J.P., and C.M. Zheng, 2002. Application of in vitro selection and somaclonal variation in improvement of disease resistance, Yi Chuan., 24, 617–630.

    PubMed  CAS  Google Scholar 

  • Lotfi M., A.R. Alan, M.J. Henning, M.M. Jahn, and E.D. Earle, 2003. Production of haploid and doubled haploid plants of melon ( Cucumis melo L) for use in breeding for multiple virus resistance, Plant Cell Rep., 21, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, D.J., and P.J. Ellis, 1992. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene, Mol. Plant Microbe Interact., 5, 34–40.

    PubMed  CAS  Google Scholar 

  • Mason, G., P. Roggero, and L. Tavella, 2003. Detection of tomato spotted wilt virus in its vector Frankliniella occidentalis by reverse transcription-polymerase chain reaction, J. Virol. Methods, 109, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Medeiros, R.B., R.O. Resende, and A.C. de Avila, 2004. The plant virus tomato spotted wilt tospovirus activates the immune system of its main insect vector, Frankliniella occidentalis, J. Virol., 78, 4976–4982.

    Article  PubMed  CAS  Google Scholar 

  • Moury, B., S. Pflieger, A. Blattes, V. Lefebvre, and A. Palloix, 2000. A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper, Genome, 43, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Murakishi, H.H., and P.S. Carlson, 1976. Regeneration of virus-free plants from dark-green islands of tobacco mosaic virus-infected tobacco leaves, Phytopathology, 66, 931–932.

    Article  Google Scholar 

  • Murakishi, H.H., and P.S. Carlson, 1982. In vitro selection of Nicotiana sylvestris variants with limited resistance to TMV, Plant Cell Rep., 1, 94–97.

    Article  Google Scholar 

  • Nagata, T., A.K. Inoue-Nagata, J. van Lent, R. Goldbach, and D. Peters, 2002. Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus, J. Gen. Virol., 83, 663–671.

    PubMed  Google Scholar 

  • Nagy, J.I., and P. Maliga, 1976. Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris, Z. Pflanzenphysiol., 78, 453–455.

    Google Scholar 

  • Pang, S-Z., P. Nagpala, M. Wang, J.L. Slighton, and D. Gonsalves, 1992. Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene, Phytopathology, 82, 1223–1229.

    CAS  Google Scholar 

  • Prins, M., and R. Goldbach, 1998. The emerging problem of tospovirus infection and nonconventional methods of control, Trends Microbiol., 6, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, D.V.R., and J.A. Wightman, 1988. Tomato spotted wilt virus: thrips transmission and control, Adv. Dis. Vector Res., 5, 203–220.

    Google Scholar 

  • Rice, D.J., T.L. German, F.R.L. Mau, and F.M. Fujimoto, 1990. Dot blot detection of tomato spotted wilt virus RNA in plant and thrips tissues by cDNA clones, Plant Dis., 74, 274–276.

    Article  Google Scholar 

  • Riley, D.G., and H.R. Pappu, 2004. Tactics for management of thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus in tomato, J. Econ. Entomol., 97, 1648–1658.

    Article  PubMed  CAS  Google Scholar 

  • Rud, E.A., A.G. Kovalenko, I.S. Shcherbatenko, L.T. Oleshchenko, N.I. Strelaeva, and L.M. Kargina, 2000. The Author’s witness N 1215. Ukrainian State Commission on testing and protecting of plant cultivars.

    Google Scholar 

  • Rudolph, C., P.H. Schreier, and J.F. Uhrig, 2003. Peptide-mediated broad-spectrum plant resistance to tospoviruses, Proc. Natl. Acad. Sci. USA, 100, 4429–4434.

    Article  PubMed  CAS  Google Scholar 

  • Saha, S., and S. Gupta, 1989. Isolation of disease free plants from tissue cultures of the TMV-infected leaf of tobacco var, Jayasri. Phytomorphology, 38, 241–248.

    Google Scholar 

  • Shcherbatenko, I.S., A.G. Kovalenko, L.T. Oleshchenko, Z.M. Olevinskaya, E.A. Rud, and N.I. Strelyaeva, 1991a. Resistance of tobacco somaclones to tomato spotted wilt virus, Mikrobiol. Zh., 53, 75–80.

    Google Scholar 

  • Shcherbatenko, I.S., A.G. Kovalenko, L.T. Oleshchenko, E.A. Rud, and N.I. Strelyaeva, 1989. The production of somatic clones of tobacco resistant to tomato spotted wilt virus, Biol. Nauk., 6, 24–27.

    Google Scholar 

  • Shcherbatenko, I.S., and L.T. Oleshchenko, 1999. Selection of androgenetic tobacco somaclones resistant to tomato spotted wilt virus, Mikrobiol. Zh., 61, 9–14.

    Google Scholar 

  • Shcherbatenko, I.S., and L.T. Oleshchenko, 1993. The production of tobacco androgenetic plants resistant to tomato spotted wilt virus, Cytol. Genet., 27, 48–52.

    Google Scholar 

  • Shcherbatenko, I.S. and L.T. Oleshchenko, 1995. The display of high resistance to tomato spotted wilt virus in cellular clones and hybrids of tobacco, Mikrobiol. Zh., 57, 65–71.

    Google Scholar 

  • Shcherbatenko, I.S, L.T. Oleshchenko, and Z.M. Olevinskaya, 1991b. Display of hypersensitivity and acquired resistance to TMV in tobacco regenerants, Mikrobiol. Zh., 53, 69–75.

    Google Scholar 

  • Shepard, J.F., 1975. Regeneration of plants from protoplasts of potato virus X-infected tobacco leaves, Virology, 66, 492–501.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood, J.L., T.L. German, A.E. Whitfield, J.W. Moyer, and D.E. Ullman, 2001. “Tospoviruses”, in Encyclopedia of Plant Pathology, edited by O.C. Maloy and T.D. Murray, John Wiley and Sons Inc., New York, pp. 1034–1040.

    Google Scholar 

  • Soellick, T., J.F. Uhrig, G.L. Bucher, J.W. Kellmann, and P.H. Schreier, 2000. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins, Proc. Natl Acad. Sci. USA, 97, 2373–2378.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, H., K. Khatani, Y. Matsuda, and S. Ouchi, 1989. Multiplication of tobacco mosaic virus in tobacco callus tissues and in vitro selection for viral disease resistance, Plant Cell Rep., 8, 433–436.

    Article  Google Scholar 

  • Ullman, D.E., R.B. Medeiros, L.R. Campbell, A.E. Whitfield, J.L. Sherwood, and T.L. German, 2002, Thrips as vectors of tospoviruses, Adv. Bot. Res., 36, 113–140.

    Article  CAS  Google Scholar 

  • Van den Bulk R.F., 1991. Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review, Euphytica, 65, 269–285.

    Article  Google Scholar 

  • van Regenmortel, M.H.V., C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Maniloff, M.A. Mayo, D.J. McGeoch, C.R. Pringle, and R.B. Wickner, 2000. Virus Taxonomy: Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses, Academic Press, San Diego, 1162 pp.

    Google Scholar 

  • Voinnet, O., Y.M. Pinto, and D.C. Baulcombe, 1999. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants, Proc. Natl. Acad. Sci. USA, 96, 14147–14152.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel, G., and H. Uhrig, 1981. Breeding for nematode and virus-resistance in potato via anther culture, Theor. Appl. Genet., 59, 333–340.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Shcherbatenko, I.S., Oleshchenko, L.T. (2006). SOMACLONAL VARIATION AS A SOURCE OF TOMATO SPOTTED WILT VIRUS-RESISTANCE IN PLANTS. In: Cooper, I., Kühne, T., Polishchuk, V.P. (eds) Virus Diseases and Crop Biosecurity. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5298-9_12

Download citation

Publish with us

Policies and ethics