Skip to main content

CURRENT VIEWS ON HOST COMPONENTS INVOLVED IN PLANT VIRUS INTERCELLULAR TRAFFICKING

  • Conference paper
Virus Diseases and Crop Biosecurity

Part of the book series: NATO Security through Science Series ((NASTC))

  • 789 Accesses

Abstract

Plant virus diseases are one of the major threats to the world food supply and mitigation of crop losses caused by viral pathogens will be necessary if the stability and abundance of the food supply is to be sustained. In the 21st century, new threats of agroterrorism with the use of plant viruses as potential biological weapon are expected to boost existing problems and to demand improved remedies. In the past, disease due to viral pathogens was controlled using breeding to introduce natural resistance genes into crop plants or protective immunization (cross protection) when prior infection with one virus affords protection against closely related and more damaging ones (Pennazio et al., 2001; Campbell et al., 2002). Proven strategies for combating viruses include also chemicals to kill vectors or to stimulate systemic acquired resistance responses (Oostendorp et al., 2001; Campbell et al., 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, K., F. Kragler, B. Xoconostle-Cázares, and W.J. Lucas, 2002. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata, Proc. Natl. Acad. Sci., USA, 99, 16342–16347.

    Article  PubMed  CAS  Google Scholar 

  • Balachandran, S., Y. Xiang, C. Schobert, G.A. Thompson, and W.J. Lucas, 1997. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata, Proc. Natl. Acad. Sci., USA, 94, 14150–14155.

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe, D., 2004. RNA silencing in plants, Nature, 431, 356–363.

    Article  PubMed  CAS  Google Scholar 

  • Benvenuto, E. and P. Tavladoraki, 1995. Immunotherapy of plant viral diseases, Trends Microbiol., 7, 272–275.

    Article  Google Scholar 

  • Blackman, L.M. and R.L. Overall, 2001. Structure and function of plasmodesmata, Austr. J. Plant Physiol., 28, 709–727.

    CAS  Google Scholar 

  • Boevink, P. and K. Oparka, 2005. Virus-host interactions during movement process, Plant Physiol., 138, 4–6.

    Article  CAS  Google Scholar 

  • Boonrod, K., D. Galetzka, P.D. Nagy, U. Conrad, and G. Krczal, 2004. Single-chain antobodies against a plant viral RNA-dependent RNA polymerase confer virus resistance, Nat. Biotechnol., 22, 856–862.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, M.A., H.A. Fitzgerald, and P.C. Ronald, 2002. Engineering pathogen resistance in crop plants, Transgenic Res., 11, 599–613.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, M.F. and S.G. Lazarowitz, 2004. Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for cabbage leaf curl geminivirus infection and pathogenicity, J. Virol., 78, 11161–11171.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, M.F., R. Turgeon, and S.G. Lazarowitz, 2006. The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition, Plant Physiol., 140, 1317–1330.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M.H., J. Sheng, J. Hind, A.K. Handa, and V. Citovsky, 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterase is required for viral cell-to-cell movement, EMBO J., 19, 813–820.

    Google Scholar 

  • Chen, M.H., G.-W. Tian, Y. Gafni, and V. Citovsky, 2005. Effects of calreticulin on viral cell-to-cell movement, Plant Physiol., 138, 1866–1876.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M.H. and V. Citovsky, 2003. Systemic movement of a tobamovirus requires host cell pectin methylesterase, Plant J., 35, 386–392.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, U. and U. Fiedler, 1998. Compartment-specific accumulation of recombinant immunoglobulis in plant cells: an essential tool for antibody production and immuno- modulation of physiological functions and pathogen activity, Plant Mol. Biol., 38, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Desvoyes, B., S. Faure-Rabasse, M.H. Chen, J.W. Park, and H.B. Scholthof, 2002. A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein, Plant Physiol., 129, 1521–1532.

    Article  PubMed  CAS  Google Scholar 

  • Dorokhov, Y.L., K. Makinen, O.Y. Frolova, A. Merits, J. Saarinen, N. Kalkkinen, J.G. Atabekov, and M. Saarma, 1999. A novel function for a ubiquitous plant enzyme pectin methylesterase: The host-cell receptor for the tobacco mosaic virus movement protein, FEBS Lett., 461, 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Fitchen, J.M. and R.N. Beachy, 1993. Genetically engineered protection against viruses in transgenic plants, Ann. Rev. Microbiol., 47, 739–753.

    Article  CAS  Google Scholar 

  • Fontes, E.P.B., A.A. Santos, D.F. Luz, A.J. Waclawovsky, and J. Chory, 2004. The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity, Genes Develop., 18, 2545–2556.

    Article  PubMed  CAS  Google Scholar 

  • Fridborg, I., J. Grainger, A. Page, M. Coleman, K. Findlay, and S. Angell, 2003. TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X., Mol. Plant Microbe Interact., 16, 132–140

    PubMed  CAS  Google Scholar 

  • Gao, Z., E. Johansen, S. Eyers, C.L. Thumas, T.H.N. Ellis, and A.J. Maule, 2005. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking, Plant J., 40, 376–385.

    Article  CAS  Google Scholar 

  • Gillespie, T., P. Boevink, S. Haupt, A.G. Roberts, R. Toth, T. Valentine, S. Chapman, and K.J. Oparka, 2002. Movement protein reveals that microtubules are dispensable for cell-to-cell movement of tobacco mosaic virus, Plant Cell, 14, 1207–1222.

    Article  PubMed  CAS  Google Scholar 

  • Goldbach, R., E. Bucher, and M. Prins, 2003. Resistance mechanisms to plant viruses: An overview, Virus Res., 92, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, G. and V. Pallas, 2001. Identification of a ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber, Mol. Plant Microbe Interact., 14, 910–913.

    PubMed  CAS  Google Scholar 

  • Gómez, G. and V. Pallás, 2004. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with hop stunt viroid RNA, J. Virol., 78, 10104–10110.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, G., H. Torres, and V. Pallas, 2005. Identification of a translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system, Plant J., 41, 319–331.

    Article  CAS  Google Scholar 

  • Haupt, S., G.H. Cowan, A. Ziegler, A.G. Roberts, K.J. Oparka, and L. Torrance, 2005. Two plant-viral movement proteins traffic in the endocytic recycling pathway, Plant Cell, 17, 164–181.

    Article  PubMed  CAS  Google Scholar 

  • Haywood, V., F. Kragler, and W.J. Lucas, 2002. Plasmodesmata: Pathways for protein and ribonucleoprotein signaling, Plant Cell, 14, Suppl., S303–S325.

    PubMed  CAS  Google Scholar 

  • Heinlein, M., 2002. The spread of tobacco mosaic virus infection: Insights into the cellular mechanism of RNA transport, Cell. Mol. Life Sci., 59, 58–82.

    Article  PubMed  CAS  Google Scholar 

  • Heinlein, M. and B.L. Epel, 2004. Macromolecular transport and signalling through plasmodesmata, Int. Rev. Cytol., 235, 93–164.

    Article  PubMed  CAS  Google Scholar 

  • Heinlein, M., H.S. Padgett, J.S. Gens, B.G. Pickard, S.J. Casper, B.L. Epel, and R.N. Beachy, 1998. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection, Plant Cell, 10, 1107–1120.

    Article  PubMed  CAS  Google Scholar 

  • Honda, A., H. Takahashi, T. Toguri, T. Ogawa, S. Hase, M. Ikegami, and Y. Ehara, 2003. Activation of defense-related gene expression and systemic acquired resistance in cucumber mosaic virus-infected tobacco plants expressing the mammalian 2’5’ oligoadenylate system, Arch. Virol., 148, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  • Huang M., L. Jongejan, H. Zheng, L. Zhang, and J. Bol, 2001. Intracellular localization and movement phenotypes of alfalfa mosaic virus movement protein mutants, Mol. Plant-Microbe Interact., 14, 1063–1074.

    PubMed  CAS  Google Scholar 

  • Johansen, L.K. and J.C. Carrington, 2001. Silencing on the spot. Induction and suppression of RNA silencing in the agrobacterium-mediated transient expression system, Plant Physiol., 126, 930–938.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, S., Y. Watanabe, and R.N. Beachy, 2004. Tobacco mosaic virus infection spreads cell to cell as intact replication complex, Proc. Natl. Acad. Sci., USA, 101, 6291–6296.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.H., E.V. Ryabov, J.W.S. Brown, and M. Taliansky, 2004. Involvement of the nucleolus in plant virus systemic infection, Bioch. Soc. Trans., 32, 557–560.

    Article  CAS  Google Scholar 

  • Kim, M.J., B.-K. Ham, H.R. Kim, I.-J. Lee, Y.J. Kim, K.H. Ryu, Y.I. Park, and K.-H. Paek, 2005. In vitro and in planta interaction evidence between Nicotiana tabacum thaumatin-like protein 1 (TLP1) and Cucumber mosaic virus proteins, Plant Mol Biol, 59, 981–994.

    Article  PubMed  CAS  Google Scholar 

  • Kragler, F., M. Curin, K. Tritnyeva, A. Gansch, and E. Waigmann, 2003. MPB2C, a microtubule associated plant protein binds to and interferes with cell-to-cell transport of tobacco-mosaic-virus movement protein, Plant Physiol., 132, 1870–1883.

    Article  PubMed  CAS  Google Scholar 

  • Laporte, C., G. Vetter, A.-M. Loudes, D.G. Robinson, S. Hillmer, C. Stussi-Garaud, and C. Ritzenthaler, 2003. Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells, Plant Cell, 15, 2058–2075.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.-Y., B.-C. Yoo, M.R. Rojas, N. Gomez-Ospina, L.A. Staehelin, and W.J. Lucas, 2003. Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1, Science, 299, 392–396.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, S., D. Plante, S. Wittmann, N. Daigneault, M.G. Fortin, and J.F. Laliberte, 2000. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity, J. Virol., 74, 7730–7737.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, S., C. Viel, C. Beauchemin, N. Daigneault, M.G. Fortin, and J.F. Laliberte, 2004. Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta, J. Gen. Virol., 85, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lin, B. and L. Heaton, 2001. An Arabidopsis thaliana protein interacts with a movement protein of turnip crinkle virus in yeast cells and in vitro, J. Gen. Virol., 82, 1245–1251.

    PubMed  CAS  Google Scholar 

  • Liu, K., Z. Xia, Y. Zhang, Y. Wen, D. Wang, K. Brandenburg, F. Harris, and D.A. Phoenix, 2005. Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: role of a putative amphiphilic alpha-helix at the N-terminus of the movement protein, Biopolymers, 79, 86–96.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, W.J., 2006. Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes, Virology, 344, 169–184.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, W.J. and J.-W. Lee, 2004. Plasmodesmata as a supracellular control network in plants, Nat. Rev. Mol. Cell. Biol., 5, 712–726.

    Article  PubMed  CAS  Google Scholar 

  • Maniataki, E., A.E. Martinez de Alba, R. Sagesser, M. Tabler, and M. Tsagris, 2003. Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with host protein VirP1, RNA, 9, 346–354.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita, Y., M. Deguchi, M. Youda, M. Nishiguchi, and H. Nyunoya, 2001. The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP, Mol. Cells, 12, 57–66.

    PubMed  CAS  Google Scholar 

  • Matsushita, Y., O. Miyakawa, M. Deguchi, M. Nishiguchi, and H. Nyunoya, 2002. Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the tomato mosaic virus movement protein, J. Exp. Botany, 53, 1531–1532.

    Article  CAS  Google Scholar 

  • McLean, B.G., J. Zupan, and P. Zambryski, 1995. TMV P30 movement protein associates with the cytoskeleton in tobacco cells, Plant Cell, 7, 2101–2114.

    Article  PubMed  CAS  Google Scholar 

  • McLean, B.G. and P. Zambryski, 2000. Interactions between viral movement proteins and the cytoskeleton, in Actin: A dynamic framework for multiple plant cell functions, edited by C.J. Staiger, F. Baluska, D. Volkmann, and P.W. Barlow, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Miyoshi, H., N. Suehiro, K. Tomoo, S. Muto, T. Takahashi, T. Tsukamoto, T. Ohmori, and T. Natsuaki, 2006. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors, Biochimie, 88, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Morozov, S.Yu. and A.G. Solovyev, 2003. Triple gene block: modular design of a multifunctional machine for plant virus movement, J. Gen. Virol., 84, 1351–1366.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R.S. and V. Citovsky, 2005. Plant viruses. Invaders of cells and pirates of cellular pathways, Plant Physiol., 138, 1809–1814.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, U., F. Brandizzi, and C. Hawes, 2003. Protein transport in plant cells: In and out of the Golgi, Ann. Botany, 92, 167–180.

    Article  CAS  Google Scholar 

  • Oostendorp, M., W. Kunz, B. Dietrich, and T. Staub, 2001. Induced disease resistance in plants by chemicals, Eur. J. Plant Pathol., 107, 19–28.

    Article  CAS  Google Scholar 

  • Oparka, K.J., 2004. Getting the message across: How do plant cells exchange macromolecular complexes?, Trends Plant Sci., 9, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Owens, R.A., M. Blackburn, and B. Ding, 2001. Possible involvement of a phloem lectin in long distance viroid movement, Mol. Plant Microbe Interact., 14, 905–909.

    PubMed  CAS  Google Scholar 

  • Paape, M., A.G. Solovyev, T.N. Erokhina, E.A. Minina, M.V. Schepetilnikov, D.E. Lesemann, J. Schiemann, S.Yu. Morozov, and J.-W. Kellmann, 2006. At-4/1, an interactor of the Tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking, Mol. Plant-Microbe Interact., 19, 874–883.

    PubMed  CAS  Google Scholar 

  • Pennazio, S., P. Roggero, and M. Conti, 2001. A history of plant virology. Cross protection, New Microbiol., 24, 99–114.

    PubMed  CAS  Google Scholar 

  • Pouwels, J., G. van der Krogt, J. van Lent, T. Bisseling, and J. Wellink, 2002. The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to cell periphery, Virology, 297, 48–56.

    Article  PubMed  CAS  Google Scholar 

  • Reichel, C. and R.N. Beachy, 1999. The role of the ER and cytoskeleton in plant viral trafficking, Trends Plant Sci., 4, 458–462.

    Article  PubMed  Google Scholar 

  • Reichel, C. and R.N. Beachy, 2000. Degradation of tobacco mosaic virus movement protein by the 26S proteasome, J. Virol., 74, 3330–3337.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A.G. and K.J. Oparka, 2003. Plasmodesmata and the control of symplastic transport, Plant, Cell Environ., 26, 103–124.

    Article  Google Scholar 

  • Ryabov, E.V., S.H. Kim, and M. Taliansky, 2004. Identification of a nuclear localization signal and nuclear export signal of the umbraviral long-distance RNA movement protein, J. Gen. Virol., 85, 1329–1333.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., K. Nakahara, M. Yoshii, M. Ishikawa, and I. Uyeda, 2005. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses, FEBS Lett., 579, 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  • Schillberg, S., S. Zimmermann, M.Y. Zhang, and R. Fischer, 2001. Antibody-based resistance to plant pathogens, Transgen. Res., 10, 1–12.

    Article  CAS  Google Scholar 

  • Scholthof, H.B., 2005. Plant virus transport: Motions of functional equivalence, Trends Plant Sci., 10, 376–382.

    Article  PubMed  CAS  Google Scholar 

  • Seppanen, P., R. Puska, J. Honkanen, L.G. Tyulkina, O. Fedorkin, S.Yu. Morozov, and J.G. Atabekov, 1997. Movement protein-derived resistance to triple gene block-containing plant viruses, J. Gen. Virol., 78, 1241–1246.

    PubMed  CAS  Google Scholar 

  • Shalitin, D. and S. Wolf, 2000. Interaction between phloem proteins and viral movement proteins, Aust. J. Plant Physiol., 27, 801–806.

    CAS  Google Scholar 

  • Soellick, T., J.F. Uhrig, G.L. Bucher, J.W. Kellmann, and P.H. Schreier, 2000. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins, Proc. Natl. Acad. Sci., USA, 94, 14150–14155.

    Google Scholar 

  • Stoger, E., M. Sack, R. Fischer, and P. Christou, 2002. Plantibodies: Applications, advantages and bottlenecks, Curr. Opin. Biotechnol., 13, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Torrance, L., I.A. Andreev, R. Gabrenaite-Verhovskaya, G. Cowan, and M.E. Taliansky, 2006. An unusual structure at one end of potato potyvirus particles, J. Mol. Biol., 357, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay, D., A.A. Vaewhongs, K.A. Turner, T.L. Sit, and S.A. Lommel, 2005. Cell wall localization of red clover necrotic mosaic virus movement protein is required for cell-to-cell movement, Virology, 333, 10–21.

    Article  PubMed  CAS  Google Scholar 

  • Trutnyeva, K., R. Bachmaier, and E. Waigmann, 2005. Mimicking carboxyterminal phosphorylation differently effects subcellular distribution and cell-to-cell movement of tobacco mosaic virus movement protein, Virology, 332, 563–577.

    Article  PubMed  CAS  Google Scholar 

  • Truve, E., M. Kelve, A. Aaspollu, A. Kuuksalu, P. Seppanen, and M. Saarma, 1994. Principles and background for the construction of transgenic plants displaying multiple virus resistance, Arch. Virol., 9, Suppl., 41–50.

    CAS  Google Scholar 

  • Tzfira, T., Y. Rhee, M.H. Chen, T. Kunik, and V. Citovsky, 2000. Nucleic acid transport in plant-microbe interactions: The molecules that walk through the walls, Ann. Rev. Microbiol., 54, 187–219.

    Article  CAS  Google Scholar 

  • Vanitharani, R., P. Chellappan, and C.M. Fauquet, 2005. Geminiviruses and RNA silencing, Trends Plant Sci., 10, 144–161.

    PubMed  CAS  Google Scholar 

  • van Vliet, C., E.C. Thomas, A. Merino-Trigo, R.D. Teasdale, and P.A. Gleeson, 2003. Intracellular sorting and transport of proteins, Progress Biophys. Mol. Biol., 83, 1–45.

    Article  CAS  Google Scholar 

  • Von Bargen, S., K. Salchert, M. Paape, B. Piechulla, and J. Kellmann, 2001. Interaction between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesis, and DnaJ-like chaperons, Plant Physiol. Biochem., 39, 1083–1093.

    Article  Google Scholar 

  • Waigmann, E., S. Ueki, K. Trutnyeva, and V. Citovsky, 2004. The Ins and Outs of nondestructive cell-to-cell and systemic movement of plant viruses, Crit. Rev. Plant Sci., 23, 195–250.

    Article  CAS  Google Scholar 

  • Wilson, T.M.A., 1993. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms, Proc. Natl. Acad. Sci., USA, 90, 16342–16347.

    Google Scholar 

  • Wittmann, S., H. Chatel, M.G. Fortin, and J.-F. Laliberte, 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso)4E of Arabidopsis thaliana using the yeast two-hybrid system, Virology, 234, 84–92.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, K., Y. Matsushita, M. Kasahara, K.-I. Konagaya, and H. Nyunoya, 2004. Interaction of tomato mosaic virus movement protein with tobacco RIO kinase, Mol. Cells, 17, 223–229.

    PubMed  CAS  Google Scholar 

  • Zamyatnin, A.A., Jr., A.G. Solovyev, P.V. Bozhkov, J.P.T. Valkonen, S.Yu. Morozov, and E.I. Savenkov, 2006. Assessment of the integral membrane protein topology in living cells, Plant J., 46, 145–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Morozov, S.Y. (2006). CURRENT VIEWS ON HOST COMPONENTS INVOLVED IN PLANT VIRUS INTERCELLULAR TRAFFICKING. In: Cooper, I., Kühne, T., Polishchuk, V.P. (eds) Virus Diseases and Crop Biosecurity. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5298-9_10

Download citation

Publish with us

Policies and ethics