Skip to main content

The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the Cloud Forest in Eastern Mexico

  • Chapter
Forest Diversity and Management

Abstract

We examined the effects of climate change on the future conservation and distribution patterns of the cloud forests in eastern Mexico, by using as a species model to Fagus grandifolia Ehr. var. mexicana (Martínez) Little which is mainly located in this vegetation type, at the Sierra Madre Oriental. This species was selected because it is restricted to the cloud forest, where it is a dominant element and has not been considered for protection in any national or international law. It is probably threatened due to the fact that it plays an important social role as a source of food and furnishing. We used a floristic database and a bioclimatic modeling approach including 19 climatic parameters, in order to obtain the current potential distribution pattern of the species. Currently, its potential distribution pattern shows that it is distributed in six different Mexican Priority Regions for Conservation. In addition, we also selected a future climate scenario, on the basis of some climate changes predictions already proposed. The scenario proposed is characterized by +2 °C and −20% rainfall in the region. Under this predicted climatic condition, we found a drastic distribution contraction of the species, in which most of the remaining populations will inhabit restricted areas located outside the boundaries of the surrounding reserves. Consequently, our results highlight the importance of considering the effects of possible future climate changes on the selection of conservation areas and the urgency to conserve some remaining patches of existing cloud forests. Accordingly, we believe that our bioclimatic modeling approach represents a useful tool to undertake decisions concerning the definition of protected areas, once the current potential distribution pattern of some selected species is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcantara O. and Luna V.I. 1997. Florística y análisis biogeográfico del bosque mesófilo de montaña de Tenango de Doria, Hidalgo, México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica 68: 57–106.

    Google Scholar 

  • Alcántara O. and Luna V.I. 2001. Análisis florístico de dos áreas con bosque mesófilo de montaña en el estado de Hidalgo, México: Eloxochitlán y Tlahuelompa. Acta Botánica Mexicana 54:51–87.

    Google Scholar 

  • Anónimo 2000. Proyecto de Norma Oficial Mexicana PROY-NOM-059-ECOL-2000, protección ambiental-especies de flora y fauna silvestres de México-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo. Diario Oficial de la Federación. de octubre de 2000.

    Google Scholar 

  • Arriaga L., Espinoza J.M., Aguilar C., Martínez E., Gómez L. and Loa E. (coordinadores) 2000. Regiones Terrestres Prioritarias de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

    Google Scholar 

  • Booth T.H., Nix H.A. and Hutchinson M.F. 1987. Grid matching: a new method for homoclime analysis. Agric. For. Meteorol. 39: 241–255.

    Article  Google Scholar 

  • Briones O.L. 1991. Sobre la flora, vegetación y fitogeografía de la Sierra de San Carlos, Tamaulipas. Acta Botánica Mexicana 16: 15–44.

    Google Scholar 

  • Canziani O.F. and Diaz S. 1998. Latin America. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special Report of IPCC Working Group II. Cambridge University Press, Cambridge, UK, pp. 187–230.

    Google Scholar 

  • Cartujano S., Zamudio S., Alcantara O. and Luna I. 2002. El bosque mesófilo de montaña en el municipio de Landa de Matamoros, Querétaro, México. Boletín de la Sociedad Botánica de México 70: 13–44.

    Google Scholar 

  • Churchill S.P., Griffin III D. and Lewis M. 1995. Moss diversity of the Tropical Andes. In: Churchill S.P., Balslev H., Forero E. and Luteyn J.L. (eds), Biodiversity and Conservation of Neotropical Montane Forestes. Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium. The New York Botanical Garden, 21–26 June 1993, New York, pp. 335–348.

    Google Scholar 

  • ESRI (Environmental Scientific Research Institute) 2000. ArcView 3.2. ESRI. Redlands, California, USA.

    Google Scholar 

  • Giorgi F., Meehl G.A., Kattenberg A., Grassl H., Mitchell J.F.B., Stouffer R.J., Tokiioka T., Weaver A.J. and Wigley T.M.L. 1998. Simulated changes in vegetation distribution under global warning. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special report of IPCC working group II. Cambridge University Press, Cambridge, UK, pp. 427–437.

    Google Scholar 

  • Houlder D.J., Hutchinson M.F., Nix H.A. and McMahon J.P. 2000. ANUCLIM 5.1 User Guide, Centre for Resource and Environmental Studies. Australian National University, Australian Capital Territory, Canberra.

    Google Scholar 

  • Houghton J.T., Callander B.A. and Varney S.K. 1992. Climate change 1992. The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hutchinson M.F. 1991. The application of thin-plate smoothing splines to continent-wide data assimilation. In: Jasper J.D. (ed.), BMRC Research Report Series. Bureau of Meteorology, Melbourne, Australia, pp. 104–113.

    Google Scholar 

  • Hutchinson M.F. 1995a. Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geogr. Inform. Syst. 9: 385–403.

    Google Scholar 

  • Hutchinson M.F. 1995b. Stochastic space-time weather models from ground-based data. Agric. For. Meteorol. 73: 237–264.

    Article  Google Scholar 

  • Hutchinson M.F. 1997. ANUSPLIN. Version 4.1. User guide, Centre for Resource and Environmental Studies, Australian National University, Australian Capital Territory, Canberra.

    Google Scholar 

  • Hutchinson M.F. and Gessler P.E. 1994. Splines — more than just a smooth interpolator. Geoderma 62: 45–67.

    Article  Google Scholar 

  • Johnston M.C., Nixon K., Nesom G.L., and Martínez M. 1989. Listado de plantas vasculares conocidas de la Sierra de Guatemala, Gómez Farías, Tamaulipas, México. Biotam 1:21–33.

    Google Scholar 

  • Kappelle M., Van Vuuren M.M.I. and Baas P. 1999. Effects of climate change on biodiversity. A review and identification of key research issues. Biodiv. Conserv. 8: 1383–1397.

    Article  Google Scholar 

  • Karl T.A. 1998. Regional trends and variation of temperature and precipitation. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special Report of IPCC Working Group II. Cambridge University Press, Cambridge, UK, pp. 411–425.

    Google Scholar 

  • Lindenmayer D.B., Nix H.A., McMahon J.P., Hutchinson M.F. and Tanton M.T. 1991. The conservation of Leadbeater’s possum, Gymnobelideus leadbeateri (McCoy): a case study of the use of bioclimatic modelling. J. Biogeogr. 18: 371–383.

    Article  Google Scholar 

  • Little E.L. Jr. 1965. Mexican beech, a variety of Fagus grandifolia. Castanea 30: 167–170.

    Google Scholar 

  • López M.L. and Cházaro B.M. 1995. Plantas leñosas raras del bosque mesófilo de montaña. I. Fagus mexicana Martínez (Fagaceae). Boletín de la Sociedad Botánica de México 57:113–115.

    Google Scholar 

  • Luna V.I., Almeida L., Villers L. and Lorenzo L. 1988. Reconocimiento florístico y consideraciones fitogeográficas del bosque mesófilo de montaña de Teocelo, Veracruz. Boletín de la Sociedad Botánica de México 48: 35–63.

    Google Scholar 

  • Luna V.I., Alcántara A.O., Espinosa O.D.E. and Morrone J.J. 1999. Historical relationships of the Mexican cloud forests: a preliminary vicariance model applying Parsimony Analysis of Endemicity to vascular plant taxa. J. Biogeogr. 26: 1299–1306.

    Article  Google Scholar 

  • Luna V.I., Alcántara A.O., Morrone J.J. and Espinosa O.D.E. 2000. Track analysis and conservation priorities in the cloud forests of Hidalgo, Mexico. Div. Distribut. 6: 137–143.

    Article  Google Scholar 

  • Luna V.I., Morrone J.J., Ayala A.O. and Organista D.E. 2001. Biogeographical affinities among Neotropical cloud forests. Plant Systemat. Evol. 228: 229–239.

    Article  Google Scholar 

  • Malda G.B. 1990. Plantas vasculares raras, amenazadas y en peligro de extinción en Tamaulipas. Biotam 2: 55–61.

    Google Scholar 

  • McNeely J.A., Gadgil M., Leveque C., Padoch C. and Reedford K. 1995. Human influences on Biodiversity. In: Heywood V.H. and Warton R.T. (eds), Global Diversity Assessment. Cambridge University Press, Cambridge, UK pp. 711–821.

    Google Scholar 

  • Moguel P. and Toledo M.V.M. 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13(1): 11–21.

    Article  Google Scholar 

  • Morrone J.J. and Crisci J.V. 1995. Historical biogeography: introduction to methods. Annu. Rev. Ecol. Systemat. 26: 373–401.

    Article  Google Scholar 

  • Morrone J.J. and Espinosa M.D. 1998. La relevancia de los atlas biogeográficos para la conservación de la biodiversidad mexicana. Ciencia (México) 49: 12–16.

    Google Scholar 

  • Nix H.A. 1986. A Biogeographic analysis of Australian elapid snakes. In: Longmore R. (ed.), Atlas of the Elapid snakes of Australia. Flora and Fauna. 7: 4–15.

    Google Scholar 

  • Neilson R.P. 1998. Simulation of regional climate change with global coupled climate models and regional modelling techniques. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special Report of IPCC Working Group II. Cambridge University Press, Cambridge, UK, pp. 439–456.

    Google Scholar 

  • Oldfield S.F., Lusty C. and MacKinven A. 1998. The World List of Threatened Trees. World Conservation Press.

    Google Scholar 

  • Pearson R.G. and Dawson T.P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12: 361–371.

    Article  Google Scholar 

  • Pérez P.M. 1994. Revisión sobre el conocimiento dendrológico, silvícola y un censo de las poblaciones actuales del género Fagus en México. Tesis de maestría (Biología). Facultad de Ciencias. Universidad Nacional Autónoma de México, México, DF, 146 pp.

    Google Scholar 

  • Pérez P.M. 1999. Las hayas de México.Monografía de Fagus grandifolia spp. mexicana. Universidad Autónoma Chapingo, Chapingo, México, 51 pp.

    Google Scholar 

  • Peterson A.T. and Vieglais D.A. 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience 51: 363–371.

    Article  Google Scholar 

  • Rzedowski J. 1996. Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica mexicana 35: 25–44.

    Google Scholar 

  • Pérez P.M. 1999. Las hayas de México.Monografísa de Fagus grandifolia spp. mexicana. Universidad Autónoma Chapingo, Chapingo, México, 51 pp.

    Google Scholar 

  • Shen C.F. 1992. A monography of the genus Fagus Tourn. ex. L. (Fagaceae). Dissertation, City University of New York, New York.

    Google Scholar 

  • Téllez V.O. and Dávila A.P. 2003. Protected areas and climate change: a case study of the cacti in the Tehuacán-Cuicatlán biosphere reserve, México. Conserv. Biol. 17(3): 846–853.

    Article  Google Scholar 

  • Vovides A.P., Luna V. and Medina G. 1997. Relación de algunas plantas y hongos mexicanos raros, amenazados o en peligro de extinción y sugerencias para su conservación. Acta Botánica Mexicana 39: 1–42.

    Google Scholar 

  • Webster G.L. 1995. The Panorama of Neotropical Cloud Forests. In: Churchill S.P., Balslev H., Forero E. and Luteyn J.L. (eds), Biodiversity and Conservation of Neotropical Montane Forestes. Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium. The New York Botanical Garden, 21–26 June 1993, New York, pp. 53–77.

    Google Scholar 

  • Williams L.G., Rowden A. and Newton A.C. 2003. Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var mexicana). Biol. Conserv. 109: 27–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David L. Hawksworth Alan T. Bull

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Téllez-Valdés, O., Dávila-Aranda, P., Lira-Saade, R. (2006). The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the Cloud Forest in Eastern Mexico. In: Hawksworth, D.L., Bull, A.T. (eds) Forest Diversity and Management. Topics in Biodiversity and Conservation, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5208-8_3

Download citation

Publish with us

Policies and ethics