Skip to main content

NEW PROPOSAL OF NUMERICAL MODELLING OF BOSE-EINSTEIN CORRELATIONS: BOSE-EINSTEIN CORRELATIONS FROM “WITHIN”

  • Conference paper
Nuclear Science and Safety in Europe

Part of the book series: NATO Security through Science Series ((NASTB))

  • 465 Accesses

Abstract

We describe an attempt to numerically model Bose-Einstein correlations (BEC) from “within”, i.e., by using them as the most fundamental ingredient of a Monte Carlo event generator (MC) rather than considering them as a kind of (more or less important, depending on the actual situation) “afterburner”, which inevitably changes the original physical content of the MC code used to model multiparticle production process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Weiner, Introduction to Bose-Einstein Corrleations and Subatomic Interferometry, J. Wiley, 1999.

    Google Scholar 

  2. T. Csörgő, in Particle Production Spanning MeV and TeV Energies, eds. W.Kittel et al., NATO Science Series C, Vol. 554, Kluwer Acad. Pub. (2000), p. 203

    Google Scholar 

  3. W. Kittel, Acta Phys. Polon. B 32, 3927 (2001).

    ADS  Google Scholar 

  4. G. Alexander, Rep. Prog. Phys. 66 (2003) 481.

    Article  ADS  Google Scholar 

  5. O.V. Utyuzh, G. Wilk, Z. Wlodarczyk, Quantum Clan Model description of Bose Einstein Correlations, hep-ph/0503046, to be published in Acta Phys. Hung. A - Heavy Ion Phys. (2005).

    Google Scholar 

  6. K.J. Eskola, Nucl. Phys. A 698, 78 (2002).

    Article  ADS  Google Scholar 

  7. T. Osada, M. Maruyama and F. Takagi, Phys. Rev. D 59, 014024 (1999).

    Article  ADS  Google Scholar 

  8. W. Zajc, Phys. Rev. D 35, 3396 (1987).

    Article  ADS  Google Scholar 

  9. H. Merlitz and D. Pelte, Z. Phys. A 357, 175 (1997).

    Article  ADS  Google Scholar 

  10. K. Geiger, J. Ellis, U. Heinz and U.A. Wiedemann, Phys. Rev. D 61, 054002 (2000).

    Article  ADS  Google Scholar 

  11. L. Lönnblad and T. Sjöstrand, Eur. Phys. J. C 2, 165 (1998).

    Article  ADS  Google Scholar 

  12. K. Fiałkowski, R. Wit and J. Wosiek, Phys. Rev. D 58, 094013 (1998).

    Article  ADS  Google Scholar 

  13. B. Andersson, Acta Phys. Polon. B 29, 1885 (1998).

    MathSciNet  ADS  Google Scholar 

  14. O.V. Utyuzh, G. Wilk and Z. Włodarczyk, Phys. Rev. D 61, 034007 (1999).

    Article  ADS  Google Scholar 

  15. O.V. Utyuzh, G. Wilk and Z. Włodarczyk, Phys. Lett. B 522, 273(2001).

    Article  ADS  MATH  Google Scholar 

  16. O.V. Utyuzh, G. Wilk and Z. Włodarczyk, Acta Phys. Polon. B 33, 2681 (2002).

    ADS  Google Scholar 

  17. J.W. Goodman, Statistical Optics, John Wiley & Sons, 1985.

    Google Scholar 

  18. B. Buschbeck and H.C. Eggers, Nucl. Phys. B (Proc. Suppl.) 92, 235(2001).

    Article  ADS  Google Scholar 

  19. E.E. Purcell, Nature 178, 1449 (1956)

    Article  ADS  Google Scholar 

  20. A. Giovannini and H.B. Nielsen, Stimulated emission effect on multiplicity distribution in: Proc. of the IV Int. Symp. on Multip. Hadrodynamics, Pavia 1973, Eds. F. Duimio, A. Giovannini and S. Ratii, p. 538.

    Google Scholar 

  21. W.J. Knox, Phys. Rev. D 10, 65 (1974).

    Article  ADS  Google Scholar 

  22. E.H. De Groot and H. Satz, Nucl. Phys. B 130, 257 (1977).

    Article  ADS  Google Scholar 

  23. J. Kripfganz, Acta Phys. Polon. B 8, 945 (1977).

    Google Scholar 

  24. A.M. Cooper, O. Miyamura, A. Suzuki and K. Takahashi, Phys. Lett. B 87, 393 (1979).

    Article  ADS  Google Scholar 

  25. F. Takagi, Prog. Theor. Phys. Suppl. 120, 201 (1995).

    Article  ADS  Google Scholar 

  26. A. Giovannini and L. Van Hove, Z. Phys. C 30, 391 (1986).

    Article  ADS  Google Scholar 

  27. M. Biyajima, N. Suzuki, G. Wilk and Z. Włodarczyk, Phys. Lett. B 386, 297 (1996).

    Article  ADS  Google Scholar 

  28. F.S. Navarra, O.V. Utyuzh, G. Wilk and Z. Włodarczyk, Phys. Rev. D 67, 114002 (2003).

    Article  ADS  Google Scholar 

  29. P. Abreu et al. (DELPHI Collab.), Phys. Lett. B 286, 201(1992).

    Article  ADS  Google Scholar 

  30. W.A. Zajc, A pedestrian’s guide to interferometry, in “Particle Production in Highly Excited Matter”, eds. H.H.Gutbrod and J.Rafelski, Plenum Press, New York 1993, p. 435.

    Google Scholar 

  31. G.A. Kozlov, O.V. Utyuzh and G. Wilk, Phys. Rev. C 68, 024901 (2003).

    Article  ADS  Google Scholar 

  32. K. Zalewski, Lecture Notes in Physics 539, 291 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Finkelstein, Phys. Rev. D 37, 2446 (1988).

    Article  ADS  Google Scholar 

  34. Ding-wei Huang, Phys. Rev. D 58, 017501 (1998).

    Article  ADS  Google Scholar 

  35. R. Kutner and M. Regulski, Comp. Phys. Com. 121–122, 586 (1999).

    Article  Google Scholar 

  36. R. Kutner, K.W. Kehr, W. Renz and R. Przeniosło, J.Phys. A 28, 923 (1995).

    Article  ADS  Google Scholar 

  37. A.E. Ezhov and A.Yu. Khrennikov, Phys. Rev. E 71, 016138 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  38. K. Stalinas, Bose-Einstein condensation in classical systems cond-mat/0001347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Utyuzh, O.V., Wilk, G., Włodarczyk, Z. (2006). NEW PROPOSAL OF NUMERICAL MODELLING OF BOSE-EINSTEIN CORRELATIONS: BOSE-EINSTEIN CORRELATIONS FROM “WITHIN”. In: Čechák, T., Jenkovszky, L., Karpenko, I. (eds) Nuclear Science and Safety in Europe. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4965-1_15

Download citation

Publish with us

Policies and ethics