Skip to main content

Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems

  • Chapter
Plants and Climate Change

Part of the book series: Tasks for vegetation science ((TAVS,volume 41))

Abstract

Recent global climate models predict a further significant loss of ozone in the next decades, with up to 50% depletion of the ozone layer over large parts of the Arctic resulting in an increase in ultraviolet-B radiation (UV-B) (280–315 nm) reaching the surface of the Earth. The percentage of total annual ecosystem N input due to biological nitrogen fixation by cyanobacteria might be as high as 80% and the contribution to total annual N uptake by plants up to 20%. A possible reduction of nitrogen fixation raises serious concerns about already nutrient impoverished plant communities. This review shows that nitrogen fixation by moss-associated cyanobacteria in arctic vegetation was dramatically reduced after six years of exposure to enhanced UV-B radiation. In subarctic vegetation, nitrogen fixation activity of moss-associated cyanobacteria was not affected by 6 years of enhanced UV-B radiation. However, a 50% increase of summer precipitation resulted in a 5- to 6-fold increase in activity. Long-term effects of UV-B radiation on nitrogen fixation activity have been examined only in two lichens, giving contrasting results. Peltigera aphthosa (L.) Willd., having external cephalodia, experienced a significant reduction, whereas Peltigera didactyla (With.) J.R. Laudon, having cyanobacteria in the photobiont layer below the upper cortex, did not experience any changes due to radiation regimes. The difference is probably related to the location of the cyanobacteria. While the Nostoc cells are protected by the fungal, melanized upper cortex in P. didactyla, they are exposed and unprotected in P. aphthosa, and their own synthesis of UV-B absorbing compounds appears to be low. Under certain environmental conditions, an increasing UV-B radiation will dramatically affect nitrogen fixation in arctic tundra vegetation, which in turn may have severe influence on the nitrogen budget in these environments. Further long-term studies are necessary to conclude if these effects are temporal and how concurrent climatic changes will influence the nitrogen balance of the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander V. 1974. A synthesis of the IBP Tundra biome, circumpolar study of nitrogen fixation. In: Holding A., Heal J.O.W., MacLean S.F. and Flanagan P.W. (eds.), Soil Organisms and Decomposition in Tundra, Tundra Biome Steering Committee, Stockholm, pp. 109–121.

    Google Scholar 

  • Alexander V., Billington M. and Schell D. 1974. The influence of abiotic factors on nitrogen fixation rates in the Barrow, Alaska, arctic tundra. Rep. Kevo Subarctic Res. Station 11: 3–11.

    Google Scholar 

  • Alexander V., Billington M. and Schell D.M. 1978. Nitrogen fixation in Arctic and Alpine tundra. In: Tieszen L.L. (ed.), Vegetation and Production Ecology of an Alaskan Arctic Tundra, Springer Verlag, New York, pp. 539–558.

    Google Scholar 

  • Aphalo P.J. 2003. Do current levels of UV-B radiation affect vegetation? Importance of long-term experiments. New Phytol. 160: 273–275.

    Article  Google Scholar 

  • Babu G.S., Joshi P.C. and Viswanathan P.N. 1998. UVB-induced reduction in biomass and overall productivity of cyanobacteria. Biochem. Biophys. Res. Commun. 244: 138–142.

    Article  PubMed  CAS  Google Scholar 

  • Barsdate K.J. and Alexander V. 1975. The nitrogen balance of arctic tundra: Pathways, rates and environmental implications. J. Environ. Quality 4: 111–117.

    Google Scholar 

  • Bjerke J.W. 2003. Arctic-alpine lichens and global change: how do ultraviolet-B radiation and warming affect secondary metabolism, morphological characters and physiological processes? Doctoral thesis, Department of Biology, Faculty of Science. University of Tromsø, Tromsø.

    Google Scholar 

  • Bjerke J.W., Zielke M. and Solheim B. 2003. Long-term impacts of simulated climatic change on secondary metabolism, thallus structure and nitrogen fixation activity in two cyanolichens from the Arctic. New Phytol. 159: 361–367.

    Article  Google Scholar 

  • Bjerke J.W., Gwynn-Jones D. and Callaghan T.V. 2005. Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens. Environ. Exp. Bot. 53: 139–149.

    Article  CAS  Google Scholar 

  • Björn L.O., Callaghan T.V., Johnsen I., Lee J.A., Manetas Y., Paul N.D., Sonesson M., Wellburn A.R., Coops D., Heide-Jorgensen H.S., Gehrke C., Gwynn-Jones D., Johanson U., Kyparissis A., Levizou E., Nikolopoulos D., Petropoulou Y. and Stephanou M. 1997. The effects of UV-B radiation on European heathland species. Plant Ecol. 128: 252–264.

    Article  Google Scholar 

  • Bliss L.C. and Gold W.G. 1994. The patterning of plant coastline — implications for succession. Can. J. Bot. 72: 1095–1107.

    Article  Google Scholar 

  • Bolch C.J.S., Blackburn S.I., Neilan B.A. and Grewe P.M. 1996. Genetic characterization of strains of cyanobacteria using PCR-RFLP of the cpcBA intergenic spacer and flanking regions. J. Phycol. 32: 445–451.

    Article  CAS  Google Scholar 

  • Buskens A. 2002. The tracing of UV-B absorbing compounds in pollen from Alnus glutinosa, and the effects of natural and/or enhanced ultraviolet radiation on a moss-cyanobacterial community (1) and an arctic tundra vegetation community (2). Doctoral thesis, Department of Systems Ecology, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Caldwell M.M., Ballaré C.L., Bormann J.F., Flint S.D., Björn L.O., Teramura A.H., Kulandaivelu G. and Tevini M. 2003. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Castenholz R.W. and Garcia-Pichel F. 2000. Cyanobacterial responses on UV-radiation. In: Whitton B.A. and Potts M. (eds.), The Ecology of Cyanobacteria: Their Diversity in Time and Space, Kluwer Academics Publishers, Dordrecht/London/Boston, pp. 591–611.

    Google Scholar 

  • Chapin D.M. and Bledsoe C.S. 1992. Nitrogen fixation in arctic plant communities. In: Chapin F.S. III, Jefferies R.L., Reynolds J.F., Shaver G.R., Svoboda J. and Chu E.W. (eds.), Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, Academic Press Inc., San Diego, pp. 301–319.

    Google Scholar 

  • Christie P. 1987. Nitrogen in two contrasting Antarctic bryophyte communities. J. Ecol. 75: 73–93.

    Article  CAS  Google Scholar 

  • Cockell C., Rettberg P., Horneck G., Scherer K. and Stockes M.D. 2003. Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol. 26: 62–69.

    Google Scholar 

  • Crittenden P.D. 1975. Nitrogen fixation by lichens on glacial drift in Iceland. New Phytol. 74: 41–49.

    Article  CAS  Google Scholar 

  • Crittenden P.D. 2000. Aspects of ecology of mat-forming lichens. Rangifer 20: 127–139.

    Google Scholar 

  • Croome R.L. 1973. Nitrogen fixation in the algal mats on Marion Island. S. Afr. Tydskrif vir Antarkiese Navorsing 3: 64–67.

    Google Scholar 

  • DeLuca T.H., Zackrisson O., Nilsson M.-C. and Sellstedt A. 2002. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419: 917–920.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B., Adams W.W. III, Green T.G.A., Czygan F.C. and Lange O.L. 1990. Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia 84: 451–456.

    Google Scholar 

  • Dickson L.G. 2000. Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T., Canada. Arctic Antarctic Alpine Res. 32: 40–45.

    Article  Google Scholar 

  • Dodds W.K., Gudder D.A. and Mollenhauer D. 1995. The ecology of Nostoc. J. Phycol. 31: 2–18.

    Article  CAS  Google Scholar 

  • Elvebakk A. 1994. A survey of plant associations and alliances from Svalbard. J. Veg. Sci. 5: 791–802.

    Article  Google Scholar 

  • Gauslaa Y. and Solhaug K.A. 2001. Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 120: 462–471.

    Article  Google Scholar 

  • Gehrke C., Johanson U., Callaghan T.V., Chadwick D. and Robinson C.H. 1995. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic. OIKOS 72: 213–222.

    Article  Google Scholar 

  • He Y.-Y. and Häder D.P. 2002. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acethyl-L-cysteine. J. Photochem. Photobiol. B: Biol. 66: 115–124.

    Article  CAS  Google Scholar 

  • Henry G.H.R. and Svoboda J. 1986. Dinitrogen fixation (acetylene reduction) in High Arctic sedge meadow communities. Arctic Alpine Res. 18: 181–187.

    Article  Google Scholar 

  • Hessen D.O. 2002. UV radiation and arctic ecosystems. In: Hessen D.O. (ed.), Ecological Studies, Springer Verlag, Heidelberg.

    Google Scholar 

  • Hughes K.A., Lawley B. and Newsham K.K. 2003. Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl. Environ. Microbiol. 69: 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  • Huiskes A.H.L., Lud D. and Moerdijk-Poortvliet T.C.W. 2001. Field research on the effects of UV-B filters on terrestrial antarctic vegetation. Plant Ecol. 154: 77–86.

    Article  Google Scholar 

  • Huss-Danell K. 1977. Nitrogen fixation by Stereocaulon paschale under field conditions. Can. J. Bot. 55: 585–592.

    Article  CAS  Google Scholar 

  • Johanson U., Gehrke C., Björn L.O., Callaghan T.V. and Sonesson M. 1995. The effects of enhanced UV-B radiation on the growth of dwarf shrubs in a subarctic heathland. Funct. Ecol. 9: 713–719.

    Article  Google Scholar 

  • Johnson D., Campbell C.D., Lee J.A., Callaghan T.V. and Gwynn-Jones D. 2002. Arctic microorganisms respond more to elevated UV-B than to CO2. Nature 416: 82–83.

    Article  PubMed  CAS  Google Scholar 

  • Jones A.E. and Shanklin J.D. 1995. Continued decline of total ozone over Halley, Antarctica, since 1985. Nature 376: 409–411.

    Article  CAS  Google Scholar 

  • Jordan D.C., McNicol P.J. and Marshall M.R. 1978. Biological nitrogen fixation in the terrestrial environment of a high Arctic ecosystem (Truelove Lowland, Devon Island, N.W.T.). Can. J. Microbiol. 24: 643–649.

    Article  PubMed  CAS  Google Scholar 

  • Kallio P. 1974. Nitrogen fixation in subarctic lichens. Oikos 25: 194–198.

    Article  CAS  Google Scholar 

  • Kallio P., Suhonen S. and Kallio S. 1972. The ecology of nitrogen fixation in Nephroma arcticum and Solorina crocea. Rep. Kevo Subarctic Res. Station 9: 7–14.

    Google Scholar 

  • Kirk-Davidoff D.B., Hintsa E.J., Anderson J.G. and Keith D.W. 1999. The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature 402: 399–401.

    Article  CAS  Google Scholar 

  • Klironomos J.N. and Allen M.F. 1995. UV-B-mediated changes on bellow-ground communities associated with the roots of Acer saccharum. Func. Ecol. 9: 923–930.

    Article  Google Scholar 

  • Kumar A., Tyagi M.B., Singh N., Tyagi R., Jha P.N., Sinha R.P. and Häder D.P. 2003. Role of white light in reversing UV-B-mediated effects in the N2-fixing cyanobacterium Anabaena BT2. J. Photochem. Photobiol. B: Biol. 71: 35–42.

    Article  CAS  Google Scholar 

  • Lennihan R., Chapin D.M. and Dickson L.G. 1994. Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commune. Can. J. Bot. 72: 940–945.

    Google Scholar 

  • Lennihan R. and Dickson L.G. 1989. Distribution, abundance and physiological aspects of N. commune in a high arctic ecosystem. J. Phycol. (Suppl.) 25: 16.

    Google Scholar 

  • Longton R.E. 1988. The Biology of Polar Bryophytes and Lichens. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mancinelli R.L. and White M.R. 2001. Inhibition of denitrification by ultraviolet radiation. Adv. Space Res. 26: 2041–2046.

    Google Scholar 

  • McKenzie R.L., Björn L.O., Bais A. and Ilyasd M. 2003. Changes in biologically active ultraviolet radiation reaching the earth’s surface. Photochem. Photobiol. Sci. 2: 5–15.

    Article  PubMed  CAS  Google Scholar 

  • Molina M.J. and Rowland F.S. 1974. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249: 810–812.

    Article  CAS  Google Scholar 

  • Moody S.A., Paul N.D., Björn L.O., Callaghan T.V., Lee J.A., Manetas Y., Rozema J., Gwynn-Jones D., Johanson U., Kyparissis A. and Oudejans A.M.C. 2001. The direct effects of UV-B radiation on Betula pubescens litter decomposing at four European field sites. Plant Ecol. 154: 29–36.

    Article  Google Scholar 

  • Nadelhoffer K.J., Giblin A.E., Shaver G.R. and Linkins A.E. 1992. Microbial processes and plant nutrient availability in arctic soils. In: Chapin F.S. III, Jefferies R.L., Reynolds J.F., Shaver G.R., Svoboda J. and Chu E.W. (eds.), Arctic Ecosystems in a Changing Climate, Academic Press, Inc., San Diego, pp. 281–300.

    Google Scholar 

  • Nash T.H. III 1996. Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash T.H. III (ed.), Lichen Biology, Cambridge University Press, Cambridge, pp. 121–135.

    Google Scholar 

  • Nash T.H. III and Olafsen A.G. 1995. Climate change and the ecophysiological response of arctic lichens. Lichenologist 27: 559–565.

    Google Scholar 

  • Newton J.W., Tyler D.D. and Slodki M.E. 1979. Effect of ultraviolet-B (280 to 320 nm) radiation on blue green algae (cyanobacteria), possible biological indicators of stratospheric ozone depletion. Appl. Environ. Microbiol. 37: 1137–1141.

    PubMed  CAS  Google Scholar 

  • Paul N.D., Callaghan T.V., Moody S.A., Gwynn-Jones D., Johanson U. and Gehrke C. 1999. UV-B impacts on decomposition and biogeochemical cycling. In: Rozema J. (ed.), Stratospheric Ozone Depletion. The effects of enhanced UV-B radiation on terrestrial ecosystems, Backhuys Publishers, Leiden, pp. 117–133.

    Google Scholar 

  • Quesada A., Mouget J.L. and Vincent W.F. 1995. Growth of Antarctic Cyanobacteria under Ultraviolet-radiation — UVA Counteracts UVB Inhibition. J. Phycol. 31: 242–248.

    Article  Google Scholar 

  • Rai A.N. 1990. Cyanobacterial-fungal symbioses: the cyanolichens. In: Rai A.N. (ed.), CRC Handbook of Symbiotic Cyanobacteria, CRC Press, Boca Raton, pp. 9–41.

    Google Scholar 

  • Rai L.C., Tyagi B., Rai P.K. and Mallick N. 1998. Interactive effects of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of a N2-fixing cyanobacteria Anabaena doliolum. Environ. Exp. Bot. 39: 221–231.

    Article  CAS  Google Scholar 

  • Roos J.C. and Vincent W.F. 1998. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 34: 118–125.

    Article  Google Scholar 

  • Sass L. and Vass I. 1998. Characterization of UV-B tolerance in lichens by photosystem II electron transport measurements. In: Garab G. (ed.), Photosynthesis: Mechanisms and Effects, Kluwer Academic Publishers, Dordrecht, pp. 2381–2384.

    Google Scholar 

  • Shaver G.R. and Chapin F.S. III 1980. Response to fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth. Ecology 61: 662–675.

    Article  CAS  Google Scholar 

  • Sheridan R.P. 2001. Role of ultraviolet radiation in maintaining the three-dimensional structure of cyanobacterial mat community and facilitating nitrogen fixation. J. Phycol. 37: 731–737.

    Article  CAS  Google Scholar 

  • Shindell D.T., Rind D. and Lonerang P. 1998a. Climate change and the middle atmosphere. Part IV: ozone response to doubled CO2. J. Climate 11: 895–918.

    Article  Google Scholar 

  • Shindell D.T., Rind D. and Lonerang P. 1998b. Increased stratospheric ozone loses and delayed recovery owning to increasing greenhouse-gas concentrations. Nature 392: 589–592.

    Article  CAS  Google Scholar 

  • Sinha R.P. 1996. Effects of UV radiation on certain physiological and biochemical processes in cyanobacteria. J. Photochem. Photobiol. B: Biol. 32: 107–113.

    Article  CAS  Google Scholar 

  • Sinha R.P., Klisch M., Gröniger A. and Häder D.P. 2001. Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecol. 154: 221–236.

    Article  Google Scholar 

  • Smith V.R. 1985. Heterotrophic acetylene reduction in soils at Marion Island. In: Siegfried W.R., Condy P.R. and Laws R.M. (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin, pp. 185–191.

    Google Scholar 

  • Solhaug K.A., Gauslaa Y., Nybakken L. and Bilger W. 2003. UV-induction of sun-screening pigments in lichens. New Phytol. 158: 91–100.

    Article  CAS  Google Scholar 

  • Solheim B., Endal A. and Vigstad H. 1996. Nitrogen fixation in Arctic vegetation and soils from Svalbard, Norway. Polar Biol. 16: 35–40.

    Google Scholar 

  • Solheim B., Johanson U., Callaghan T.V., Lee J.A., Gwynn-Jones D. and Björn L.O. 2002. The nitrogen fixation potential of arctic cryptogram [sic.] species is influenced by enhanced UV-B radiation. Oecologia 133: 90–93.

    Article  Google Scholar 

  • Solheim B., Wiggen H., Røberg S. and Spaink H.P. 2004. Associations between arctic cyanobacteria and mosses. Symbiosis 37: 169–187.

    Google Scholar 

  • Solheim B. and Zielke M. 2002. Associations between cyanobacteria and mosses. In: Rai A.N., Bergman B. and Rasmussen U. (eds.), Cyanobacteria in Symbiosis, Kluwer Academic Publishers, Dordrecht Boston London, pp. 137–152.

    Google Scholar 

  • Solheim B., Zielke M., Spjelkavik S. and Olsen R.A. 2005. Seasonal variations in nitrogen fixation in high arctic vegetation, Svalbard, Norway. Arct. Antarct. Alp. Res. 37: 372–378.

    Article  Google Scholar 

  • Stapleton A.E. 1999. Ultraviolet radiation and plants: burning questions. Plant Cell 4: 1353–1358.

    Article  Google Scholar 

  • Takeuchi Y., Ikeda S. and Kasahara H. 1993. Dependence on wavelength and temperature of growth inhibition induced by UV-B radiation. Plant Cell Physiol. 34: 913–917.

    Google Scholar 

  • Tedrow J.C.F. 1977. Soils of the Polar Landscapes. The State University of New Jersey, Rutgers.

    Google Scholar 

  • Taalas P., Kaurola J., Kylling A., Shindell D., Sausen R., Dameris M., Grewe V., Herman J., Damski J. and Steil B. 2000. The impact of greenhouse gases and halogenated species on future solar UV radiation doses. Geophys. Res. Lett. 27: 1127–1130.

    Article  CAS  Google Scholar 

  • Van Coppenolle B., McCouch S.R., Watanabe I., Huang N. and Van Hove C. 1995. Genetic diversity and phylogeny analysis of Anabaena-Azolla based on RFLPs detected in Azolla-Anabaena azollae DNS complexes using nif gene probes. Theor. Appl. Genet. 91: 589–597.

    Article  Google Scholar 

  • van de Staaij J., Rozema J. and Aerts R. 1999. The impacts on mutualistic plant/micro-organism interactions at the soil-root interface. In: Rozema J. (ed.), Stratospheric Ozone Depletion. The Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems, Backhuys Publishers, Leiden, pp. 159–171.

    Google Scholar 

  • Vincent W.F. 1988. Microbial ecosystems of Antarctica. Press Syndicate of the University of Cambridge, Cambridge.

    Google Scholar 

  • Vincent W.F. 2000. Cyanobacterial dominance in the polar regions. In: Whitton B.A. and Potts M. (eds.), The Ecology of Cyanobacteria: Their Diversity in Time and Space, Kluwer Academics Publishers, Dordrecht London Boston, pp. 321–340.

    Google Scholar 

  • Vincent W.F. and Neale P.J. 2000. Mechanisms of UV damage to aquatic organisms. In: de Mora S., Demers S. and Vernet M. (eds.), The Effects of UV Radiation in the Marine Environment, Cambridge University Press, Cambridge, pp. 149–176.

    Google Scholar 

  • Vitousek P.M., Walker L.R., Whittaker L.D., Mueller-Dombois D. and Matson P.A. 1987. Biological invasion by Myrica faga alters ecosystem development in Hawaii. Science 238: 802–804.

    Article  PubMed  CAS  Google Scholar 

  • Zepp R.G., Callaghan T.V. and Erickson D.J. 1998. Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. J. Photochem. Photobiol. B: Biol. 46: 69–82.

    Article  CAS  Google Scholar 

  • Zielke, M. 2004. Diversity and nitrogen fixation activity of cyanobacterial communities in terrestrial acrtic ecosystems. Doctoral thesis, Department of Biology. University of Tromsø, Tromsø.

    Google Scholar 

  • Zielke M., Ekker A.S., Olsen R.A., Spjelkavik S. and Solheim B. 2002. The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic, Svalbard. Arct. Antarct. Alp. Res. 34: 293–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Solheim, B., Zielke, M., Bjerke, J.W., Rozema, J. (2006). Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems. In: Rozema, J., Aerts, R., Cornelissen, H. (eds) Plants and Climate Change. Tasks for vegetation science, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4443-4_8

Download citation

Publish with us

Policies and ethics