Skip to main content

The Link Between Neutrino Masses and Proton Decay in Supersymmetric Unification

  • Chapter
A Century of Ideas

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 149))

  • 1488 Accesses

One major goal of this talk will be to stress that supersymmetric unification based on symmetries like SO(10) [15], or (for most purposes) a stringderived [6, 16] G(224) = SU(2)L × SU(2)R × SU(4)C, has implications not only for (i) gauge coupling unification and (ii) proton decay, but also for (iii) the masses and mixings of the charged fermions, as well as for (iv) those of the neutrinos. In fact, within a unified theory, all four features (i)–(iv) get intimately linked to each other, much more so than commonly thought. Each of these, including even charged fermion and neutrino-masses, provides some essential clue to the nature of higher unification. As regards the link between the four features, even neutrino masses turn out to have direct influence on proton decay. This is because the latter receives important contributions through a new set of d= 5 operators that depend directly on the Majorana masses of the right-handed neutrinos [17]. These new d= 5 operators, which were missed in the literature, contribute significantly to proton decay amplitudes, in addition of course to the “standard” d= 5 operators [11], which arise through the exchange of the color-triplet Higgsinos related to the electro-weak doublets. The standard and the new d= 5 operators, related to the charged fermion as well as the neutrino masses, together raise our expectation that proton decay should be observed in the near future [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Fukuda, et al., Phys. Lett. 81, 1562 (1998).

    Article  Google Scholar 

  2. J.C. Pati, Neutrino 98, Takayama, Japan, June, 98, hep-ph/9807315; Nuclear Phys. B (Proc. Suppl.), 77, 299 (1999).

    Google Scholar 

  3. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); E. Akhmedov, Z. Berezhiani and G. Senjanovic, Phys. Rev. Lett. 69, 3013 (1992).

    Article  ADS  Google Scholar 

  4. J.N. Bachall, P. Krastev and A. Yu Smirnov, Phys. Rev. D. 58, 096016 (1998).

    Article  ADS  Google Scholar 

  5. J.C. Pati and Abdus Salam, Proc. 15th High Energy Conference, Batavia 2, 301 (1972); Phys. Rev. 8, 1240 (1973).

    Google Scholar 

  6. J.C. Pati and Abdus Salam Phys. Rev. Lett. 31, 661 (1973); Phys. Rev. D 10, 275 (1974).

    Article  ADS  Google Scholar 

  7. H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    Article  ADS  Google Scholar 

  8. H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).

    Article  ADS  Google Scholar 

  9. M. Green and J.H. Schwarz, Phys. Lett. B 149, 117 (1984); D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54, 502 (1985); P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B 258, 46 (1985); M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory Vols. 1 and 2, Cambridge University Press; ed., M. Dine, String Theory in Four dimensions, North Holland (1988); J. Polchinski, Les Houches Lectures, hep-th/9411028 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Langacker and M. Luo, Phys. Rev. D 44, 817 (1991); U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett. B 260, (1991); J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. B 260, 131 (1991); F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, Nuovo Cim. A 104, 1817 (1991); S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D 24, 1681 (1981); W. Marciano and G. Senjanovic, Phys. Rev. D 25, 3092 (1982); M. Einhorn and D.R.T. Jones, Nucl. Phys. B 196, 475 (1982).

    Article  ADS  Google Scholar 

  11. S. Weinberg, Phys. Rev. D 26, 287 (1982); N. Sakai and T. Yanagida, Nucl. Phys. B 197, 533 (1982).

    Article  ADS  Google Scholar 

  12. Y.A. Gelfand and E.S. Likhtman, JETP Lett. 13, 323 (1971); J. Wess and B. Zumino, Nucl. Phys. B 70, 139 (1974); D. Volkov and V.P. Akulov, JETP Lett. 16, 438 (1972).

    ADS  Google Scholar 

  13. K. Dienes, Phys. Reports 287, 447 (1997). hep-th/9602045, and references therein.

    Article  ADS  MathSciNet  Google Scholar 

  14. J.C. Pati, hep-ph/9811442; Proc. Salam Memorial Meeting, World Scientific, (1998).

    Google Scholar 

  15. H. Georgi, in Particles and Fields, ed., C. Carlson, AIP, NY, (1975); H. Fritzsch and P. Minkowski, Ann. Phys. 93, 193 (1975).

    Google Scholar 

  16. I. antoniadis, G. Leontaris and J. Rizos, Phys. Lett. B 245, 161 (1990); G. Leontaris, Phys. Lett. B 372, 212 (1996).

    ADS  Google Scholar 

  17. K.S. Babu, J.C. Pati and F. Wilczek, Phys. Lett. B 434, 337 (1998).

    ADS  Google Scholar 

  18. K.S. Babu, J.C. Pati and F. Wilczek, hep-ph/981538V3; Nucl. Phys. B, to appear.

    Google Scholar 

  19. S. Mikheyev and A. Smirnov, Nuovo Cim. C 9, 17 (1986); L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).

    Article  ADS  Google Scholar 

  20. J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R.N. Mohapatri and J.C. Pati, Phys. Rev. D 11, 566, 2558 (1975); G. Senjanovic and R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975).

    Article  ADS  Google Scholar 

  21. V. Kuzmin, Va Rubakov and M. Shaposhnikov, Phys. Lett. BM 155, 36 (1985); M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986); M.A. Luty, Phys. Rev. D 45, 455 (1992); W. Buchmuller and M. Plumacher, hep-ph/9608308.

    Article  ADS  Google Scholar 

  22. F. Gürsey, P. Ramond and P. Sikivie, Phys. Lett. B 60, 177 (1976).

    Article  ADS  Google Scholar 

  23. P. Langacker and N. Polonsky, Phys. Rev. D 47, 4028 (1993) and references therein.

    Article  ADS  Google Scholar 

  24. E. Witten, Nucl. Phys. B 443, 85 (1995); P. Horava and E. Witten, Nucl. Phys. B 460, 506 (1996); J. Polchinski, hep-th/9511157; A. Sen, hep-th/9802051, and references therein; M. Duff, hep-ph/9805177 V3.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. P. Ginsparg, Phys. Lett. B 197, 139 (1987); V.S. Kaplunovsky, Nucl. Phys. B 307, 145 (1988); Erratum, ibid. 382, 436 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Witten, hep-th/9602070.

    Google Scholar 

  27. J.C. Pati and K.S. Babu, hep-ph/9606215, Phys. Lett. B 384, 140 (1996).

    Article  ADS  Google Scholar 

  28. D. Lewellen, Nucl. Phys. B 337, 61 (1990); A. Font, L. Ibanez and F. Quevedo, Nucl. Phys. B 345, 389 (1990); S. Chaudhari, G. Hockney and J. Lykken, Nucl. Phys. B 456, 89 (1995) and hep-th/9510241; G. Aldazabad, A. Font, L. Ibanez and A. Uranga, Nucl. Phys. B 452, 3 (1995); ibid. B 465, 34 (1996); D. Finnell, Phys. Rev. D 53, 5781 (1996); A.A. Maslikov, I. Naumov and G.G. Volkov, Int. J. Mod. Phys. A 11, 1117 (1996); J. Erler, hep-th/9602032 and G. Cleaver, hep-th/9604183; and Z. Kakushadze and S.H. Tye, hep-th/9605221, and hep-th/9609027, Z. Kakushadze et al., hep-ph/9705202.

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Faraggi, Phys. Lett. B 278, 131 (1992); Phys. Lett. B 274, 47 (1992); Nucl. Phys. B 403, 101 (1993); A. Faraggi and E. Halyo, Nucl. Phys. B 416, 63 (1994).

    Article  ADS  Google Scholar 

  30. See e.g. [16]

    Google Scholar 

  31. J.C. Pati, hep-ph/9607446, Phys. Lett. B 388, 532 (1996).

    Article  ADS  Google Scholar 

  32. A. Faraggi and J.C. Pati, hep-ph/9712516v3, December (1997), Nucl. Phys. B (to appear).

    Google Scholar 

  33. A. Faraggi and J.C. Pati, Phys. Lett. B 400, 314 (1997).

    Article  ADS  Google Scholar 

  34. K.S. Babu and J.C. Pati, Towards a resolution of the supersymmetric CP problem through flavor and left-right symmetries, (to appear).

    Google Scholar 

  35. K.R. Dienes and J. March-Russell, hep-th/9604112; K.R. Dienes, hep-ph/9606467.

    Google Scholar 

  36. M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, (eds.) F. van Nieuwenhuizen and D. Freedman, Amsterdam, North Holland (1979) p. 315; T. Yanagida, in: Workshop on the Unified Theory and Baryon Number in the Universe (eds.), O. Sawada and A. Sugamoto KEK, Tsukuba, 95 (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

    Google Scholar 

  37. H. Georgi and C. Jarlskog, Phys. Lett. B 86, 297 (1979).

    Article  ADS  Google Scholar 

  38. F. Wilczek and Z. Zee, Phys. Lett. B 70, 418 (1977); H. Fritzsch, Phys. Lett. B 70, 436 (1977).

    Article  ADS  Google Scholar 

  39. C. Albright, K.S. Babu and S.M. Barr, Phys. Rev. Lett. 81, 1167 (1998).

    Article  ADS  Google Scholar 

  40. J. Gasser and H. Leutwyler, Phys. Rept. 87, 77 (1982).

    Article  ADS  Google Scholar 

  41. R. Gupta and T. Bhattacharya, Nucl. Phys. Proc. Suppl. 53, 292 (1997); and Nucl. Phys. Proc. Suppl. 63, 45 (1998).

    Article  ADS  Google Scholar 

  42. V. Barger, M. Berger and P. Ohmann, Phys. Rev. D 47, 1093 (1993); M. Carena, S. Pokorski and C. Wagner Nucl. Phys. B 406, 59 (1993); P. Langacker and N. Polonsky, Phys. Rev. D 49, 1454 (1994); D.M. Pierce, J.A. Bagger, K. Matchev and R. Zhang, Nucl. Phys. B 491, 3 (1997); K.S. Babu and C. Kolda, hep-ph/9811308.

    Article  ADS  Google Scholar 

  43. S. Dimopoulos, S. Raby and F. Wilczek, Phys. Lett. B 112, 133 (1982); J. Ellis, D.V. Nanopoulos and S. Rudaz, Nucl. Phys. B 202, 43 (1982).

    Article  ADS  Google Scholar 

  44. P. Nath, A.H. Chemseddine and R. Arnowitt, Phys. Rev. D 32, 2348 (1985); P. Nath and R. Arnowitt, hep-ph/9708469.

    Article  ADS  Google Scholar 

  45. J. Hisano, H. Murayama and T. Yanagida, Nucl. Phys. B 402, 46 (1993).

    Article  ADS  Google Scholar 

  46. K.S. Babu and S.M. Barr, Phys. Rev. D 50, 3529 (1994); D 51, 2463 (1995).

    Article  ADS  Google Scholar 

  47. Y. Hayato, Int. Conf. High Energy Physics, Vancouver, July (1998).

    Google Scholar 

  48. See e.g. [45].

    Google Scholar 

  49. S. Dimopoulos and F. Wilczek, Report No. NSF-ITP-82-07 (1981), Proc. of the 19th Course of the International School on Subnuclear Physics (ed.), A. Zichichi), Erice, Italy, 1981, Plenum Press, New York; K.S. Babu and S.M. Barr, Phys. Rev. D 48, 5354 (1993).

    Google Scholar 

  50. N. Tatsui et al., JLQCD collaboration, hep-lat/9809151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Pati, J.C. (2008). The Link Between Neutrino Masses and Proton Decay in Supersymmetric Unification. In: Sidharth, B.G. (eds) A Century of Ideas. Fundamental Theories of Physics, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4360-4_13

Download citation

Publish with us

Policies and ethics