Skip to main content

Light/Dark Regulation of Chloroplast Metabolism

  • Chapter
The Structure and Function of Plastids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 23))

Light not only provides the energy for carbon assimilation in the chloroplast, it is also an important regulatory factor of carbon metabolism. The activities of several of its key enzymes are linked to light. This enables the chloroplasts to switch between biosynthetic pathways in the light and catabolic processes in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonkine ML, Jordan P, Fromme P, Krauss N, Golbeck JH and StehlikD(2003) Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327: 671–697

    Article  PubMed  CAS  Google Scholar 

  • Åslund F and Beckwith J (1999a) Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96: 751–753

    Google Scholar 

  • Åslund F and Beckwith J (1999b) The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. J Bacteriol 181: 1375–1379

    Google Scholar 

  • Baalmann E, Backhausen JE, Rak C, Vetter S and Scheibe R (1995) Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 324: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Stritt-Etter AL, Hirasawa M, Jacquot JP, Keryer E, Knaff DB and Schürmann P (2001) Oxidation-reduction and activation properties of chloroplast fructose 1,6- bisphosphatase with mutated regulatory site. Biochemistry 40: 15444–15450

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Koller A, del Val G, Manieri W, Schürmann P and Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100: 370–375

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Koller A, del Val G, Schürmann P and Buchanan BB (2004) Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Photosyn Res 79: 275–280

    Article  PubMed  CAS  Google Scholar 

  • Baumann U and Juttner J (2002) Plant thioredoxins: the multiplicity conundrum. Cell Mol Life Sci 59: 1042–1057

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I, Nature 426: 630–635.

    Article  PubMed  CAS  Google Scholar 

  • Brandes H, Larimer F and Hartman F (1996) The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. J Biol Chem 271: 3333–3335

    Article  PubMed  CAS  Google Scholar 

  • BuchananBB(1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31: 341–364

    Article  CAS  Google Scholar 

  • BuchananBB(1991) Regulation ofCO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Schürmann P, Decottignies P and Lozano RM (1994) Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch Biochem Biophys 314: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Buchanan B, Schürmann P,Wolosiuk R and Jacquot J (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Capitani G, Markovic-Housley Z, delVal G, Morris M, Jansonius JN and Schürmann P (2000) Crystal structures of two functionally different thioredoxins in spinach chloroplasts. J Mol Biol 302: 135–154

    Article  PubMed  CAS  Google Scholar 

  • Carr PD, Verger D, Ashton AR and Ollis DL (1999) Chloroplast NADP-malate dehydrogenase: structural basis of light dependent regulation of activity by thiol oxidation and reduction. Struc London 7: 461–475

    CAS  Google Scholar 

  • Chiadmi M, Navaza A, Miginiac-Maslow M, Jacquot JP and Cherfils J (1999) Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase. EMBO J 18: 6809–6815

    Article  PubMed  CAS  Google Scholar 

  • Ciurli S, Carrie M, Weigel JA, Carney MJ, Stack TDP, Papaefthymiou GC and Holm RH (1990) Subsite-differentiated analogs of native iron sulfide [4Fe-4S]2+ clusters: preparation of clusters with five- and six-coordinate subsites and modulation of redox potentials and charge distributions. J Am Chem Soc 112: 2654–2664

    Article  CAS  Google Scholar 

  • Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB and Miginiac-Maslow M (2003) The Arabidopsis plastidal thioredoxins: new functions and new insights into specificity. J Biol Chem 278: 23747–23752

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, Johansson K, Ramaswamy S, Schürmann P and Eklund H (2000a) How does light regulate chloroplast enzymes? Structure-function studies of the ferredoxin/ thioredoxin system. Quart Rev Biophys 33: 67–108

    Article  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S and Eklund H (2000b) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287: 655–658

    Article  PubMed  CAS  Google Scholar 

  • del Val G, Maurer F, Stutz E and Schürmann P (1999) Modification of the reactivity of spinach chloroplast thioredoxin f by site-directed mutagenesis. Plant Sci 149: 183–190

    Article  Google Scholar 

  • Droux M, Jacquot JP, Miginac-Maslow M, Gadal P, Huet JC, Crawford NA, Yee BC and Buchanan BB (1987) Ferredoxinthioredoxin reductase, an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis: purification and properties of the enzyme from C3, C4, and cyanobacterial species. Arch Biochem Biophys 252: 426–439

    Article  PubMed  CAS  Google Scholar 

  • Dunford RP, Catley MA, Raines CA, Lloyd JC and Dyer TA (1998) Purification of active chloroplast sedoheptulose-1,7- bisphosphatase expressed in Escherichia coli. Protein Expr Purif 14: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Falini G, Fermani S, Ripamonti A, Sabatino P, Sparla F, Pupillo P and Trost P (2003) Dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD. Biochemistry 42: 4631–4639

    Article  PubMed  CAS  Google Scholar 

  • Faske M, Holtgrefe S, Ocheretina O, Meister M, Backhausen JE and Scheibe R (1995) Redox equilibria between the regulatory thiols of light/ dark-modulated chloroplast enzymes and dithiothreitol: fine-tuning by metabolites. Biochim Biophys Acta-Protein Struct Mol Enzym 1247: 135–142

    Article  Google Scholar 

  • Fermani S, Ripamonti A, Sabatino P, Zanotti G, Scagliarini S, Sparla F, Trost P and Pupillo P (2001) Crystal structure of the non-regulatory A(4) isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP. J Mol Biol 314: 527–542

    Article  PubMed  CAS  Google Scholar 

  • GeckMKand Hartman FC (2000) Kinetic and mutational analyses of the regulation of phosphoribulokinase by thioredoxins. J Biol Chem 275: 18034–18039

    Article  Google Scholar 

  • Glauser DA, Bourquin F, Manieri W and Schürmann P (2004) Characterization of ferredoxin:thioredoxin reductase (FTR) modified by site-directed mutagenesis. J Biol Chem 279: 16662–16669

    Article  PubMed  CAS  Google Scholar 

  • Goyer A, Decottignies P, Issakidis-Bourguet E and Miginiac- Maslow M (2001) Sites of interaction of thioredoxin with sorghum NADP-malate dehydrogenase. FEBS Lett 505: 405– 408

    Article  PubMed  CAS  Google Scholar 

  • Graciet E, Gans P, Wedel N, Lebreton S, Camadro JM and Gontero B (2003) The small protein CP12: a protein linker for supramolecular complex assembly. Biochemistry 42: 8163– 8170

    Article  PubMed  CAS  Google Scholar 

  • Gromer S, Urig S and Becker K (2004) The thioredoxin system- From science to clinic. Med Res Rev 24: 40–89

    Article  PubMed  CAS  Google Scholar 

  • Harrison DH, Runquist JA, Holub A and Miziorko HM (1998) The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase. Biochemistry 37: 5074–5085

    Article  PubMed  CAS  Google Scholar 

  • HatchMD(1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochem Biophys Acta 895: 81–106

    CAS  Google Scholar 

  • Heineke D, Riens B, Grosse H, Hoferichter P, Peter U, Flügge U-I and Heldt, HW (1991) Redox transfer across the inner chloroplast envelope membrane. Plant Physiology. 95: 1131– 1137

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Droux M, Gray KA, Boyer JM, Davis DJ, Buchanan BB and Knaff DB (1988) Ferredoxin-thioredoxin reductase: properties of its complex with ferredoxin. Biochim Biophys Acta 935: 1–8

    Article  CAS  Google Scholar 

  • Hirasawa M, Schürmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC and Knaff DB (1999) Oxidationreduction properties of chloroplast thioredoxins, ferredoxin: thioredoxin reductase, and thioredoxin f-regulated enzymes. Biochemistry 38: 5200–5205

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Ruelland E, Schepens I, Issakidis-Bourguet E, Miginiac-Maslow M and Knaff DB (2000) Oxidationreduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphatemalate dehydrogenase. Biochemistry 39: 3344–3350

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54: 237– 271

    Article  PubMed  CAS  Google Scholar 

  • Issakidis E, Miginiac-Maslow M, Decottignies P, Jacquot JP, Cretin C and Gadal P (1992) Site-directed mutagenesis reveals the involvement of an additional thioredoxin-dependent regulatory site in the activation of recombinant sorghum leaf NADP-malate dehydrogenase. J Biol Chem 267: 21577– 21583

    PubMed  CAS  Google Scholar 

  • Jacquot J-P, Lancelin J-M and Meyer Y (1997) Thioredoxins: structure and function in plant cells. New Phytol 136: 543– 570

    Article  CAS  Google Scholar 

  • Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C and Aubry A (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol 64: 1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Jameson GN, Walters EM, Manieri W, Schürmann P, Johnson MK and Huynh BH (2003) Spectroscopic evidence for site specific chemistry at a unique iron site of the [4Fe-4S] cluster in ferredoxin:thioredoxin reductase. J Am Chem Soc 125: 1146–1147

    Article  PubMed  CAS  Google Scholar 

  • Johansson K, Ramaswamy S, Saarinen M, Lemaire-Chamley M, Issakidis-Bourguet E, Miginiac-Maslow M and Eklund H (1999) Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form. Biochemistry 38: 4319-4326

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Krimm I, Goyer A, Issakidis-Bourguet E, Miginiac-Maslow M and Lancelin JM (1999) Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADPmalate dehydrogenase provides a structural basis for the relief of autoinhibition. J Biol Chem 274: 34539–34542

    Article  PubMed  CAS  Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y and Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin- NADP(+) reductase. Nat Struct Biol 8: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Lebreton S and Gontero B(1999)Memory and imprinting in multienzyme complexes. Evidence for information transfer from glyceraldehyde-3-phosphate dehydrogenase to phosphoribulokinase under reduced state in Chlamydomonas reinhardtii. J Biol Chem 274: 20879–20884

    Article  PubMed  CAS  Google Scholar 

  • Lebreton S, Graciet E and Gontero B (2003) Modulation, via protein-protein interactions, of glyceraldehyde-3-phosphate dehydrogenase activity through redox phosphoribulokinase regulation. J Biol Chem 278: 12078–12084

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD, Collin V, Keryer E, Quesada A and Miginiac- Maslow M (2003) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543: 87–92

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Verdoucq L and Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4: 388–394

    Article  PubMed  Google Scholar 

  • Meyer Y, Miginiac-Maslow M, Schürmann P and Jacquot J-P (2001) Protein-protein interactions in the plant thioredoxin dependent systems. In: McManus MT, Laing W and Allan A (eds) The Annual Plant Reviews, pp 1–29. Sheffield Academic Press, Sheffield, England

    Google Scholar 

  • Meyer Y, Vignols, F and Reichheld J-P (2002) Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347: 394–402

    Article  PubMed  CAS  Google Scholar 

  • Miginiac-Maslow M and Lancelin J-M (2002) Intrasteric inhibition in redox signalling: light activation of NADP-malate dehydrogenase. Photosynth Res 72: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Miginiac-Maslow M, Issakidis E, Lemaire M, Ruelland E, Jacquot JP and Decottignies P (1997) Light-dependent activation of NADP-malate dehydrogenase: a complex process. Aust J Plant Physiol 24: 529–542

    Article  CAS  Google Scholar 

  • Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gomez-Moreno C and Frey M (2000) A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep 1: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT and Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98: 11224–11229

    Article  PubMed  CAS  Google Scholar 

  • Porter MA, Stringer CD and Hartman FC (1998) Characterization of the regulatory thioredoxin site of phosphoribulokinase. J Biol Chem 263: 123–129

    Google Scholar 

  • Powis G and Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30: 421–455

    Article  PubMed  CAS  Google Scholar 

  • Qi J, Isupov M, Littlechild J and Anderson L (2001) Chloroplast glyceraldehyde-3-phosphate dehydrogenase contains a single disulfide bond located in the C-terminal extension to the B subunit. J Biol Chem 276: 35247–35252

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Suarez RJ, Mora-Garcia S and Wolosiuk RA (1997) Characterization of cysteine residues involved in the reductive activation and the structural stability of rapeseed (Brassica napus) chloroplast fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 232: 388–393

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E and Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci 4: 136–141

    Article  PubMed  Google Scholar 

  • Ruelland E, Johansson K, Decottignies P, DjukicNand Miginiac- Maslow M (1998) The autoinhibition of sorghum NADP malate dehydrogenase is mediated by a C-terminal negative charge. J Biol Chem 273: 33482–33488

    Article  PubMed  CAS  Google Scholar 

  • Salamon Z, Tollin G, Hirasawa M, Gardet-Salvi L, Stritt-Etter AL, Knaff DB and Schürmann P (1995) The oxidationreduction properties of spinach thioredoxins f and m and of ferredoxin:thioredoxin reductase. Biochim Biophys Acta 1230: 114–118

    Article  PubMed  Google Scholar 

  • Scagliarini S, Trost P and Pupillo P (1998) The non-regulatory isoform of NADP(H)-glyceraldehyde-3-phosphate dehydrogenase from spinach chloroplasts. J Exp Bot 49: 1307–1315

    Article  CAS  Google Scholar 

  • Scheibe R (1994) Photoregulation of chloroplast enzymes. Naturwissenschaften 81: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R, Kampfenkel K, Wessels R and Tripier D (1991) Primary structure and analysis of the location of the regulatory disulfide bond of pea chloroplast NADP-malate dehydrogenase. Biochim Biophys Acta 1076: 1–8

    PubMed  CAS  Google Scholar 

  • Schepens I, Johansson K, Decottignies P, Gillibert M, Hirasawa M, Knaff D and Miginiac-Maslow M (2000) Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity. J Biol Chem 275: 20996–21001

    Article  PubMed  CAS  Google Scholar 

  • Schürmann P (2003a) The ferredoxin/thioredoxin system. A light-dependent redox regulatory system in oxygenic photosynthetic cells. In: Gitler C and Danon A (eds) Cellular Implications of Redox Signalling, pp 73–98.

    Google Scholar 

  • World Scientific Publishing Co Ltd, Singapore Schürmann P (2003b) Redox signaling in the chloroplast - the ferredoxin/thioredoxin system. Antioxidants Redox Sig 5: 69–78

    Article  CAS  Google Scholar 

  • Schürmann P and Buchanan BB (2001) The structure and function of the ferredoxin/thioredoxin system. In: Andersson B and Aro EM (eds)Regulatory Aspects of Photosynthesis. Advances in Photosynthesis, Vol 11, pp. 331–361. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schürmann P and Gardet-Salvi L (1993) Chemical modification of the active site of ferredoxin-thioredoxin reductase. Chimia 47: 245–246

    Google Scholar 

  • Schürmann P and Jacquot J-P (2000) Thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51: 371–400

    Article  PubMed  Google Scholar 

  • Schürmann P and Wolosiuk RA (1978) Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase. Biochim Biophys Acta 522: 130–138

    PubMed  Google Scholar 

  • Schwarz O, Schürmann P and Strotmann H (1997) Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J Biol Chem 272: 16924–16927

    Article  PubMed  CAS  Google Scholar 

  • Schwendtmayer C, Manieri W, Hirasawa M, Knaff DB and Schürmann P (1998) Cloning, expression and characterization of ferredoxin:thioredoxin reductase from Synechocystis sp PCC6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects (Proceedings of the Xth International Congress on Photosynthesis, Budapest, Hungary), pp 1927–1930. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sparla F, Pupillo P and Trost P (2002) The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. J Biol Chem 277: 44946–44952

    Article  PubMed  CAS  Google Scholar 

  • Staples CR, Ameyibor E, FuW, Gardet-Salvi L, Stritt-Etter AL, Schürmann P, Knaff DB and JohnsonMK(1996) The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters. Biochemistry 35: 11425–11434

    Article  PubMed  CAS  Google Scholar 

  • Staples CR, Gaymard E, Stritt-Etter AL, Telser J, Hoffman BM, Schürmann P, Knaff DB and Johnson MK (1998) Role of the [Fe4S4] cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37: 4612–4620

    Article  PubMed  CAS  Google Scholar 

  • Villeret V, Huang S, Zhang Y, Xue Y and Lipscomb WN (1995) Crystal structure of spinach chloroplast fructose-1,6- bisphosphatase at 2.8 Å resolution. Biochemistry 34: 4299–4306

    Article  PubMed  CAS  Google Scholar 

  • Wangensteen OS, Chueca A, Hirasawa M, Sahrawy M, Knaff DB and Lopez Gorge J (2001) Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction. Biochim Biophys Acta 1547: 156–166

    PubMed  CAS  Google Scholar 

  • Wedel N and Soll J (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Natl Acad Sci USA 95: 9699–9704

    Article  PubMed  CAS  Google Scholar 

  • Wenderoth I, Scheibe R and von Schaewen A (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J Biol Chem 272: 26985–2690

    Article  PubMed  CAS  Google Scholar 

  • Zhang N and Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96: 9438–9443

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann G, Kelly GJ and Latzko E (1976) Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem 70: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Schwendtmayer C, Manieri W, Hirasawa M, Knaff DB and Schürmann P (1998) Cloning, expression and characterization of ferredoxin:thioredoxin reductase from Synechocystis sp PCC6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects (Proceedings of the Xth International Congress on Photosynthesis, Budapest, Hungary), pp 1927–1930. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sparla F, Pupillo P and Trost P (2002) The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. J Biol Chem 277: 44946–44952

    Article  PubMed  CAS  Google Scholar 

  • Staples CR, Ameyibor E, FuW, Gardet-Salvi L, Stritt-Etter AL, Schürmann P, Knaff DB and JohnsonMK(1996) The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters. Biochemistry 35: 11425–11434

    Article  PubMed  CAS  Google Scholar 

  • Staples CR, Gaymard E, Stritt-Etter AL, Telser J, Hoffman BM, Schürmann P, Knaff DB and Johnson MK (1998) Role of the [Fe4S4] cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37: 4612–4620

    Article  PubMed  CAS  Google Scholar 

  • Villeret V, Huang S, Zhang Y, Xue Y and Lipscomb WN (1995) Crystal structure of spinach chloroplast fructose-1,6- bisphosphatase at 2.8 Å resolution. Biochemistry 34: 4299–4306

    Article  PubMed  CAS  Google Scholar 

  • Wangensteen OS, Chueca A, Hirasawa M, Sahrawy M, Knaff DB and Lopez Gorge J (2001) Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction. Biochim Biophys Acta 1547: 156–166

    PubMed  CAS  Google Scholar 

  • Wedel N and Soll J (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Natl Acad Sci USA 95: 9699–9704

    Article  PubMed  CAS  Google Scholar 

  • Wenderoth I, Scheibe R and von Schaewen A (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J Biol Chem 272: 26985–2690

    Article  PubMed  CAS  Google Scholar 

  • Zhang N and Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96: 9438–9443

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann G, Kelly GJ and Latzko E (1976) Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem 70: 361–367

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Dai, S., Hallberg, K., Eklund, H., Schürmann, P. (2007). Light/Dark Regulation of Chloroplast Metabolism. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_11

Download citation

Publish with us

Policies and ethics