Skip to main content

APPLICATION OF GROUND-BASED RADAR INTERFEROMETRY TO MONITOR AN ACTIVE ROCKSLIDE AND IMPLICATIONS FOR EMERGENCY MANAGEMENT

  • Conference paper
Landslides from Massive Rock Slope Failure

Part of the book series: NATO Science Series ((NAIV,volume 49))

Abstract

A rockslide of about 10¶ m³ was reactivated in April 2002 on Monte Beni near the town of Firenzuola in Northern Tuscany (Italy). The rockslide caused the evacuation of 3 private houses and the interruption of the Regional Road n.65 “della Futa”, one of the main transportation routes connecting Firenze and Bologna. During the emergency, in order to rapidly acquire data on the state, distribution and style of activity of the moving rockslide, a monitoring campaign was carried out, using an innovative radar device capable of a remote sensing assessment of ground displacement fields with a high resolution and accuracy. The system is a ground-based radar interferometer, known as LISA (Linear Synthetic Aperture radar), which has been successfully tested in past experiences for landslide monitoring. The production of multi-temporal maps of ground displacements, over a time span of 5 days, has provided a clear picture of the rockslide mechanism and activity. These data were utilised by public authorities and decision makers to define temporary measures for risk reduction and risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atzeni, C., Basso, M., Canuti, P., Casagli, N., Leva, D., Luzi, G., Moretti, S., Pieraccini, M., Sieber, A.J. and Tarchi, D. (2001) Ground-based SAR interferometry for landslide monitoring and control. Proc. ISSMGE Field Workshop on Landslides and Natural/Cultural Heritage. Trabzon (Turkey), 195–209.

    Google Scholar 

  2. Atzeni, C., Canuti, P. and Tarchi, D. (2001) Monitoring unstable cultural heritage sites with radar interferometry. In: K. Sassa (ed.), Proc. UNESCO/IGCP Symp. on Landslide Risk Mitigation and Protection of Cultural and Natural Heritage. Tokyo, Japan, 257–264.

    Google Scholar 

  3. Atzeni, C., Canuti, P., Casagli, N., Leva, D., Luzi, G., Moretti, S., Pieraccini, M., Sieber, A.J. and Tarchi, D. (2002). Ground-based radar interferometry: a novel technique for monitoring unstable slopes and cliffs. In: R.G. McInnes and J. Jakeways (Editors), Instability planning and management: Seeking sustainable solutions to ground movement problems. Thomas Telford, London, 447–454.

    Google Scholar 

  4. Canuti, P. (2000) Cava di Monte Beni: Relazione Geomeccanica. Commissione di studio per la messa in sicurezza di Monte Beni, Comune di Firenzuola. 36 pp.

    Google Scholar 

  5. Canuti, P., Casagli, N., Leva, D., Moretti, S., Sieber, A.J. and Tarchi, D. (2002) Landslide monitoring by using ground-based radar interferometry. In: J. Rybar, J. Stemberk and P. Wagner (eds.), Landslides. Proceedings 1st European Conference on Landslides. Prague, Balkema, 523–528.

    Google Scholar 

  6. Canuti, P., Casagli, N., Leva, D., Moretti, S., Sieber, A.J. and Tarchi, D. (2002) Some applications of ground-based radar interferometry to monitor slope movements. Proc. Int. Symp. Landslide Risk Mitigation and Protection of Cultural and Natural Heritage. UNESCO and Kyoto University, 357–374.

    Google Scholar 

  7. Casagli, N., Farina, P., Leva, D., Nico, G. and Tarchi, D. (2002) Monitoring the Tessina landslide by a ground-based interferometer and assessment of the system accuracy. Proc. IGARSS 2002 - International Geoscience and Remote Sensing Symp. Toronto, Canada.

    Google Scholar 

  8. Casagli, N., Farina, P., Leva, D., Nico, G. and Tarchi, D. (in press) Landslide monitoring on a short and long time scale by using ground-based SAR interferometry. Proc. 9th Int. Symp. on Remote Sensing for Environmental Monitoring, GIS Applications, and Geology. Aghia Pelagia, Crete Greece,. International Society of Optical Engineering (SPIE).

    Google Scholar 

  9. Fukuzono, T. (1985) A new method for predicting the failure time of a slope failure. Proc. 4th Int. Conf. and Field Workshop on Landslides, Tokyo (Japan), 145–150.

    Google Scholar 

  10. Hungr, O. (2002) Analytical models for slides and flows. Proc. Int. Symp. Landslide Risk Mitigation and Protection of Cultural and Natural Heritage. UNESCO and Kyoto University, 559–586.

    Google Scholar 

  11. Hutchinson, J.N. (1987) Mechanisms producing large displacements in landslides on pre-existing shears. 1st Sino-British Geol. Conf., Tapei, Memoir of the Geological Survey of China, 9, 175–200.

    Google Scholar 

  12. Legros, F. (2002) The mobility of long-runout landslides. Eng. Geology, 63, 301–331.

    Article  Google Scholar 

  13. Massonnet D. and Feigl K.L. (1998) Radar interferometry and its applications to changes in the Earth’s surface. Reviews of Geophysics, 36(4), 441–500.

    Article  Google Scholar 

  14. Pieraccini, M., Casagli, N., Luzi, G., Tarchi, D., Mecatti, D., Noferini, L. and Atzeni, C., in press. Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int. J. Remote Sensing.

    Google Scholar 

  15. Rudolf, H., Leva, D., Tarchi, D. and Sieber, A.J. (1999) A mobile and versatile SAR system, Proc. IGARSS’99 International Geoscience and Remote Sensing Symp., Hamburg, 592–594.

    Google Scholar 

  16. Scheidegger, A. E. (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics, 5, 231–236.

    Article  Google Scholar 

  17. Tarchi, D. Casagli N., Leva, D., Moretti, S. and Sieber, A.J. (in press) Monitoring landslide displacements by using ground-based differential SAR interferometry: application to the Ruinon landslide in the Italian Alps. J. Geoph. Research.

    Google Scholar 

  18. Tarchi, D., Casagli, N., Fanti, R., Leva, D., Luzi, G. Pasuto, A., Pieraccini, M. and Silvano, S. (inpress) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng. Geology.

    Google Scholar 

  19. Tarchi, D., Ohlmer, E. and Sieber, A.J. (1997) Monitoring of Structural Changes by Radar Interferometry. Research in Nondestructive Evaluation, 9, 213–225.

    Google Scholar 

  20. Voight, B. (1988) Material science law applies to time forecast of slope failure. Landslide News, 3, 8–11.

    Google Scholar 

  21. Voight, B. (ed.) Rockslides and Avalanches Natural Phenomena. Developments in Geotechnical Engineering Elsevier Sc., Amsterdam, 14, 833 pp.

    Google Scholar 

  22. Zebker, H.A. and Goldstein, R.M. (1986) Topographic mapping from interferometric Synthetic Aperture Radar observations. J. Geoph. Research, 91, 4993–4999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

CASAGLI, N., FARINA, P., LEVA, D., TARCHI, D. (2006). APPLICATION OF GROUND-BASED RADAR INTERFEROMETRY TO MONITOR AN ACTIVE ROCKSLIDE AND IMPLICATIONS FOR EMERGENCY MANAGEMENT. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure. NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4037-5_9

Download citation

Publish with us

Policies and ethics