Skip to main content

An Introduction to Orbital-Free Density Functional Theory

  • Chapter
Handbook of Materials Modeling

Abstract

Given a quantum mechanical system of N electrons and an external potential (which typically consists of the potential due to a collection of nuclei), the traditional approach to determining its ground-state energy involves the optimization of the corresponding wavefunction, a function of 3N dimensions, without considering spin variables. As the number of particles increases, the computation quickly becomes prohibitively expensive. Nevertheless, electrons are indistinguishable so one could intuitively expect that the electron density — N times the probability of finding any electron in a given region of space — might be enough to obtain all properties of interest about the system. Using the electron density as the sole variable would reduce the dimensionality of the problem from 3N to 3, thus drastically simplifying quantum mechanical calculations. This is in fact possible, and it is the goal of orbital-free density functional theory (OF-DFT). For a system of N electrons in an external potential Vext, the total energy E can be expressed as a functional of the density ρ [1], taking on the following form:

$$ E\left[ \rho \right] = F\left[ \rho \right] + \mathop \smallint \limits_\Omega V_{ext} \left( {\overrightarrow r } \right)\rho \left( {\overrightarrow r } \right)d\overrightarrow r $$
(1)

Here, Ω denotes the system volume considered, while F is the universal functional that contains all the information about how the electrons behave and interact with one another. The actual form of F is currently unknown and one has to resort to approximations in order to evaluate it. Traditionally, it is split into kinetic and potential energy contributions, the exact forms of which are also unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, B864–B871, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., 140, A1133–A1138, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Goedecker, “Linear scaling electronic structure models,” Rev. Mod. Phys., 71(4), 1085–1123, 1999.

    Article  ADS  Google Scholar 

  4. E. Fermi, “Un metodo statistice per la determinazione di alcune proprieta dell’atomo,” Rend. Accad., Lincei 6, 602–607, 1927.

    Google Scholar 

  5. L.H. Thomas, “The calculation of atomic fields,” Proc. Camb. Phil. Soc., 23, 542–548, 1927.

    Article  MATH  Google Scholar 

  6. C.C.J. Roothaan, “New developments in molecular orbital theory,” Rev. Mod. Phys., 23, 69–89, 1951.

    Article  MATH  ADS  Google Scholar 

  7. C.F. von Weizsäcker, “Zur Theorie der Kernmassen,” Z. Phys, 96, 431–458, 1935.

    Article  MATH  ADS  Google Scholar 

  8. P.K. Acharya, L.J. Bartolotti, S.B. Sears, and R.G. Parr, “An atomic kinetic energy functional with full Weizsacker correction,” Proc. Natl. Acad. Sci. USA, 77, 6978–6982, 1980.

    Article  ADS  Google Scholar 

  9. P. Garcia-Gonzalez, J.E. Alvarellos, and E. Chacón, “Kinetic-energy density functional: atoms and shell structure,” Phys. Rev. A, 54, 1897–1905, 1996.

    Article  ADS  Google Scholar 

  10. T. Wesolowski and A. Warshel, “Ab initio free-energy perturbation calculations of solvation free-energy using the frozen density-functional approach,” J. Phys. Chem., 98, 5183–5187, 1994.

    Article  Google Scholar 

  11. N. Choly and E. Kaxiras, “Kinetic evergy density functionals for non-periodic systems,” Solid State Commun., 121, 281–286, 2002.

    Article  ADS  Google Scholar 

  12. S. Watson, B.J. Jesson, E.A. Carter, and P. A. Madden, “Ab initio pseudopotentials for orbital-free density functionals,” Europhys. Lett., 41, 37–42, 1998.

    Article  ADS  Google Scholar 

  13. J.A. Anta and P.A. Madden, “Structure and dynamics of liquid lithium: comparison of ab initio molecular dynamics predictions with scattering experiments,” J. Phys. Condens. Matter, 11, 6099–6111, 1999.

    Article  ADS  Google Scholar 

  14. Y. Wang and R.G. Parr, “Construction of exact Kohn-Sham orbitals from a given electron density,” Phys. Rev. A, 47, R1591–R1593, 1993.

    Article  ADS  Google Scholar 

  15. B. Zhou, Y.A. Wang, and E.A. Carter, “Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment,” Phys. Rev. B, 69, 125109, 2004.

    Article  ADS  Google Scholar 

  16. D.A. Kirzhnits, “Quantum corrections to the Thomas-Fermi equation,” Sov. Phys. —JETP, 5, 64–71, 1957.

    MATH  MathSciNet  Google Scholar 

  17. C.H. Hodges, “Quantum corrections to the Thomas-Fermi approximation — the Kirzhnits method,” Can. J. Phys., 51, 1428–1437, 1973.

    ADS  Google Scholar 

  18. D.R. Murphy, “The sixth-order term of the gradient expansion of the kinetic energy density functional,” Phys. Rev. A, 24, 1682–1688, 1981.

    Article  ADS  Google Scholar 

  19. J. Lindhard. K. Dan. Vidensk. Seist Mat. Fys. Medd., 28, 8, 1954.

    MathSciNet  Google Scholar 

  20. L.-W. Wang and M.P. Teter, “Kinetic-energy functional of the electron density,” Phys. Rev. B, 45, 13196–13220, 1992.

    Article  ADS  Google Scholar 

  21. F. Perrot, “Hydrogen-hydrogen interaction in an electron gas,” J. Phys. Condens. Matter, 6, 431–446, 1994.

    Article  ADS  Google Scholar 

  22. E. Smargiassi and P.A. Madden, “Orbital-free kinetic-energy functionals for first-principles molecular dynamics,” Phys. Rev. B, 49, 5220–5226, 1994.

    Article  ADS  Google Scholar 

  23. M. Foley and P.A. Madden, “Further orbital-free kinetic-energy functionals for ab initio molecular dynamics,” Phys. Rev. B, 53, 10589–10598, 1996.

    Article  ADS  Google Scholar 

  24. P. Garcia-Gonzalez, J.E. Alvarellos, and E. Chacon, “Nonlocal symmetrized kineticenergy density functional: application to simple surfaces,” Phys. Rev. B, 57, 4857–4862, 1998.

    Article  ADS  Google Scholar 

  25. Y.A. Wang, N. Govind, and E.A. Carter, “Orbital-free kinetic-energy density functionals with a density-dependent kernel,” Phys. Rev. B, 60, 16350–16358, 1999.

    Article  ADS  Google Scholar 

  26. B.J. Jesson and P.A. Madden, “Ab initio determination of the melting point of aluminum by thermodynamic integration,” J. Chem. Phys., 113, 5924–5934, 2000.

    Article  ADS  Google Scholar 

  27. G.A. de Wijs, G. Kresse, and M.J. Gillan, “First-order phase transitions by first-principles free-energy calculations: the melting of Al.,” Phys. Rev. B, 57, 8223–8234, 1998.

    Article  ADS  Google Scholar 

  28. T. Gál and A. Nagy, “A method to get an analytical expression for the non-interacting kinetic energy density functional,” J. Mol. Struct., 501–502, 167–171, 2000.

    Google Scholar 

  29. E. Sim, J. Larkin, and K. Burke, “Testing the kinetic energy functional: kinetic energy density as a density functional,” J. Chem. Phys., 118, 8140–8148, 2003.

    Article  ADS  Google Scholar 

  30. Y.A. Wang and E.A. Carter, “Orbital-free kinetic energy density functional theory,” In: S.D. Schwartz (ed.), Theoretical Methods in Condensed Phase Chemistry, Kluwer, Dordrecht, pp. 117–184, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Lignères, V.L., Carter, E.A. (2005). An Introduction to Orbital-Free Density Functional Theory. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_9

Download citation

Publish with us

Policies and ethics