Skip to main content
  • 7735 Accesses

Abstract

Understanding matter circulation in the biosphere constitutes one of the fundamental research objectives for ecologists. Stocks of materials, their distribution, and their fluxes between different compartments are basic parameters that need to be characterized to explain the functioning of any ecosystem. Their study is usually arduous owing to the variety of routes that materials can follow, and to the complexity of the processes that are involved. Leopold (1949) described matter flux in ecosystems in a brief but elegant way in what he named ‘The odyssey of the atom X’: “An atom at large in the biota is too free to know freedom; an atom back to the sea has forgotten it. For every atom lost to the sea, the prairie pulls another one out of the decaying rocks. The only certain truth is that its creatures must suck hard, live fast, and die often, lest its losses exceed its gains.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcoverro T, Romero J, Duarte CM and López NI (1997) Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Mar Ecol Prog Ser 146: 155–161

    Google Scholar 

  • Alcoverro T, Manzanera M and Romero J (1998) Seasonal and age-dependent variability of Posidonia oceanica (L.) Delile photosynthesis and respiration. J Exp Mar Biol Ecol 230: 1–13

    CAS  Google Scholar 

  • Alcoverro T, Manzanera M and Romero J (2001) Annual metabolic carbon balance of the seagrass Posidonia oceanica: The importance of carbohydrate reserves. Mar Ecol Prog Ser 211: 105–116

    CAS  Google Scholar 

  • Bach S, Thayer G and LaCroix M (1986) Export of detritus from eelgrass (Zostera marina) beds near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 28: 265–278

    Google Scholar 

  • Bay D (1982) In-situ study of the metabolism of 3 intra littoral benthic communities of the Gulf of Aqaba. Comptes Rendues des Seances de l'Academie des Sciences Serie III Sciences de la Vie 294: 463–466

    Google Scholar 

  • Bay D (1984) A field study of the growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi bay, Corsica. Aquat Bot 20: 43–64

    Google Scholar 

  • Beer S and Bjork M (2000) Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat Bot 66: 69–76

    CAS  Google Scholar 

  • Bernays EA, Cooper G and Bilgener M (1989) Herbivores and plant tannins. Adv Ecol Res 19: 263–302

    Google Scholar 

  • Bjorndal KA (1980) Nutrition and grazing behavior of the green turtle Chelonia mydas. Mar Biol 56: 147–156

    CAS  Google Scholar 

  • Borowitzka MA and Lethbridge RC (1989) Seagrass epiphytes. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses, pp 458–499. Elsevier, Amsterdam

    Google Scholar 

  • Borum J (1985) Development of epiphytic communities on eelgrass (Zostra marina) along a nutrient gradient in a Danish estuary. Mar Biol 87: 211–218

    Google Scholar 

  • Boschker HTS, de Brouwer JFC and Cappemberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: Stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44: 309–319

    Google Scholar 

  • Boschker HTD, Wielemaker A, Schaub BEM and Holmer M (2000) Limited coupling of macrophyte production and bacterial carbon cycling in the sediments of Zostera spp. meadows. Mar Ecol Prog Ser 203: 181–189

    CAS  Google Scholar 

  • Boudouresque CF, Giraud G, Thommeret J and Thommeret Y (1980) First attempt at dating by 14C the undersea beds of dead Posidonia oceanica in the bay of Port-Man (Port-Cros, Var, France). Tav. Sci. Parc nation. Port-Cros, France 6: 239–242

    Google Scholar 

  • Brouns JWM (1985) A comparison of the annual production and biomass in three monospecific strands of the seagrass Thalassia hemprichii (Ehrenb.) Aschers. Aquat Bot 23: 149–175

    Google Scholar 

  • Burd AB and Dunton KH (2001) Field verification of a lightdriven model of biomass changes in the seagrass Halodule wrightii. Mar Ecol Prog Ser 209: 85–98

    Google Scholar 

  • Burke MK, Dennison WC and Moore KA (1996) Non-structural carbohydrate reserves of eelgrass Zostera marina. Mar Ecol Prog Ser 137: 195–201

    CAS  Google Scholar 

  • Buzzelli ZP, Wetzel RL and Meyers MB (1998) Dynamic simulation of littoral zone habitats in Lower Chesapeake Bay. II. Seagrass habitat primary production and water quality relationships. Estuaries 21: 673–689

    CAS  Google Scholar 

  • Buzzelli ZP, Wetzel RL and Meyers MB (1999) Alinked physical and biological framework to assess biogeochemical dynamics in a shallow estuarine ecosystem. Est Coast Shelf Sci 49: 829–851

    Google Scholar 

  • Camp D, Cobb S and van Breedveld JF (1973) Overgrazing by seagrasses by a regular urchin, Lytechinus variegatus. Bioscience 23: 37–38

    Google Scholar 

  • Carman KR and Fry B (2002) Small-sample methods for δ 13C and δ 15N analysis of the diets of marsh meiofaunal species using natural-abundance and tracer-addition isotope techniques. Mar Ecol Prog Ser 240: 85–92

    CAS  Google Scholar 

  • Cebrián J (1999) Patterns in the fate of production in plant communities. Am Nat 154: 449–468

    PubMed  Google Scholar 

  • Cebrián J (2002) Variability and control of carbon consumption, export and accumulation in marine communities. Limnol Oceanogr 47: 11–22

    Google Scholar 

  • Cebrián J and Duarte CM (1994) The dependence of herbivory on growth rate in natural plant communities. Funct Ecol 8: 518–525

    Google Scholar 

  • Cebrián J and Duarte CM (1998) Patterns in leaf herbivory on seagrasses. Aquat Bot 60: 67–82

    Google Scholar 

  • Cebrián J, Duarte CM, Marbà N, Enríquez S, Gallegos M and Olesen B (1996a) Herbivory on Posidonia oceanica (L.) Delile: Magnitude and variability in the Spanish Mediterranean. Mar Ecol Prog Ser 130: 147–155

    Google Scholar 

  • Cebrián J, Duarte CM and Marbà N (1996b) Herbivory on the seagrass Cymodocea nodosa (Ucria) Acherson in contrasting Spanish Mediterranean habitats. J Exp Mar Biol Ecol 204: 103–111

    Google Scholar 

  • Cebrián J, Duarte CM, Marbà N and Enríquez S (1997) Magnitude and fate of the production of four co-occurring Western Mediterranean seagrass species. Mar Ecol Prog Ser 155: 29–44

    Google Scholar 

  • Cebrián J, Williams M, McClelland J and Valiela I (1998) The dependence of heterotrophic consumption and carbon accumulation on autotrophic content in ecosystems. Ecol Lett 1: 165–170

    Google Scholar 

  • Cebrián J, Pedersen MF, Kroeger KD and Valiela I (2000) Fate of production of the seagrass Cymodocea nodosa in different stages of meadow formation. Mar Ecol Prog Ser 204: 119–130

    Google Scholar 

  • Choat JH and Clements KD (1998) Vertebrate herbivores in marine and terrestrial environments: A nutritional ecology perspective. Annu Rev Ecol Syst 29: 375–403

    Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Phil Trans R Soc Lond 303: 605–604

    Google Scholar 

  • Clymo RS (1992) Productivity and decomposition of peatland ecosystems. In: Bragg OM, Hulme PD, Ingram HAP and Robertson RA (eds) Peatland Ecosystems and Man: An Impact Assessment, pp 3–16. Department of Biological Sciences, Dundee, UK

    Google Scholar 

  • Conacher MJ, Lanzing WJR and Larkum AWD (1979) Ecology of Botany Bay. 2. Aspects of the feeding ecology of the fanbellied leatherjacket Monacanthus chinensis (Pisces: Monacanthidae), in Posidonia australis seagrass beds in Quibray Bay, New South Wales. Aust J Mar Freshwater Res 30: 387–400

    Google Scholar 

  • Connolly RM, Guest MA, Melville AJ and Oakes JM (2004) Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138: 161–167

    PubMed  Google Scholar 

  • Crouzet A (1984) Contribution a l'etude anatomique des feuilles de Posidonia oceanica (Potamogetonaceae). Variations de la structure le long d'une ecaille epaisse. In: Boudouresque CF, Jeudy de Grissac A and Olivier J (eds) InternationalWorshop on Posidonia oceanica Beds, 1, pp 109–117. GIS Posidonie, Mareseille

    Google Scholar 

  • Daehnik AE, Sullivan MJ and Moncreiff CA (1992) Primary production of the sand microflora in seagrass beds of Mississippi Sound. Bot Mar 35: 131–139

    Google Scholar 

  • Danovaro R (1996) Detritus—Bacteria–Meiofauna interactions in seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar Biol 127: 1–13

    CAS  Google Scholar 

  • Dauby P (1989) The stable carbon isotope ratios in benthic food webs of the Gulf of Calvi, Corsica. Cont Shelf Res 9: 181–195

    Google Scholar 

  • Dauby P (1995) A δ 13C study of the feeding habits in four Mediterranean Leptomysis species (Crustacea: Mysidacea). PSZNI Mar Ecol 16: 93–102

    CAS  Google Scholar 

  • Dawes CJ (1998) Marine Botany (2nd edition). John Wiley & Sons, Inc., New York

    Google Scholar 

  • De Iongh HH, Wenno BJ and Meelis E (1995) Seagrass distribution and seasonal biomass changes in relation to dugong grazing in the Moluccas, East Indonesia. Aquat Bot 50: 1–19

    Google Scholar 

  • Del Giorgio PA and Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29: 503–541

    Google Scholar 

  • Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW and Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation: Habitat requirements as barometers of Chesapeake Bay health. Bioscience 43: 86–94

    Google Scholar 

  • Duarte CM (1989) Temporal biomass variability and production/biomass relationships of seagrass communities. Mar Ecol Prog Ser 51: 269

    Google Scholar 

  • Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 37–112

    Google Scholar 

  • Duarte CM and Cebrián J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41: 758–1766

    Google Scholar 

  • Duarte CM and Chiscano CL (1999) Seagrass biomass and production: A reassessment. Aquat Bot 65: 159–174

    Google Scholar 

  • Duarte CM, Merino M, Agawin NSR, Uri J, Fortes MD, Gallegos ME, Marbà N and Hemminga MA (1998) Root production and below-ground seagrass biomass. Mar Ecol Prog Ser 171: 97–108

    Google Scholar 

  • Dunton KH (1996) Photosynthetic production and biomass of the subtropical seagrass Halodule wrightii along an estuarine gradient. Estuaries 19: 436–447

    CAS  Google Scholar 

  • Durako MJ and Kunzelman JI (2002) Photosynthetic characteristics of Thalassia testudinum measured in situ by pulseamplitude modulated (PAM) fluorometry: Methodological and scale-based considerations. Aquat Bot 73: 173–185

    Google Scholar 

  • Enríquez S, Duarte CM and Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C: N: P content. Oecologia 94: 457–471

    Google Scholar 

  • Fenchel TM and Harrison P (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: Anderson JM and Macfadyen A (eds) The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, pp 285–299. Blackwell Scientific, London

    Google Scholar 

  • Fourqurean JW and Zieman JC (1991) Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 69: 161–170

    Google Scholar 

  • Fourqurean JW, Moore TO, Fry B and Hollibaughet JT (1997) Spatial and temporal variation in C: N: P ratios, δ15N and δ 13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. Mar Ecol Prog Ser 157: 147–157

    CAS  Google Scholar 

  • Frankignoulle M and Bouquegneau JM (1987) Seasonal variation of the diel carbon budget of a marine macrophyte ecosystem. Mar Ecol Prog Ser 38: 197–199

    CAS  Google Scholar 

  • Fry B and Virnstein R (1988) Leaf production and export of the seagrass Syringodium filiforme Kütz, in an Indian River lagoon, Florida. Aquat Bot 30: 261–266

    Google Scholar 

  • Fry B, Macko SA and Zieman JC (1987) Review of stable isotopic investigations of food webs in seagrass meadows. In: Durako MJ, Phillips RC and Lewis RR (eds) Proceedings of a Symposium on Subtropical-Tropical Seagrasses, Southeast United States, pp 117–138. Florida Department of Natural Resources, Bureau of Marine Research, St. Petersburg (Florida Mar. Resources Publ. No. 42)

    Google Scholar 

  • Fry B, Baltz DM, Benfield MC, Fleeger JW, Gace A, Haas HL and Quiñones-Rivera ZJ (2003) Stable isotope indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in coastal Louisiana marshscapes. Estuaries 26: 82–97

    Google Scholar 

  • Gacia E and Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Est Coast Shelf Sci 52: 505–514

    Google Scholar 

  • Gacia E, Granata TC and Duarte CM (1999) An approach to measurement of particulate flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65: 255–268

    Google Scholar 

  • Gacia E, Duarte CM and Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47: 23–32

    CAS  Google Scholar 

  • Gambi MC, Nowell ARM and Jumars PA (1990) Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61: 159–169

    Google Scholar 

  • Godshalk GL and Wetzel RG (1978) Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition. Aquat Bot 5: 329–354

    CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1: 182–195

    Google Scholar 

  • Greenway M (1995) Trophic relationships of macrofauna within a Jamaican seagrass meadow and the role of the echinoid Lytechinus variegatus (Lamarck). Bull Mar Sci 56: 719–736

    Google Scholar 

  • Harrison PG (1989) Detrital processing in seagrass systems: A review of factors affecting decay rates, remineralization and detritivory. Aquat Bot 23: 263–288

    Google Scholar 

  • Harrison PG and Mann KH (1975) Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching and decay. Limnol Oceanogr 20: 924–934

    CAS  Google Scholar 

  • Hauxwell J, Cebrián J and Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: Relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Mar Ecol Prog Ser 247: 59–73

    CAS  Google Scholar 

  • Havelange S, Lepoint G, Dauby P and Bouquegneau JM (1997) Feeding of the sparid fish Sarpa salpa in a seagrass ecosystem: Diet and carbon flux. PSZNI Mar Ecol 18: 289–287

    Google Scholar 

  • Heck KL Jr and Valentine JF (1995) Sea urchin herbivory: Evidence for long-lasting effects in subtropical seagrass meadows. J Exp Mar Biol Ecol 189: 205–217

    Google Scholar 

  • Heck KL Jr, Pennock JR, Valentine JF, Coen LD and Sklenar SA (2000) Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment. Limnol Oceanogr 45: 1041–1057

    CAS  Google Scholar 

  • Hemminga MA and Nieuwenhuize J (1991) Seagrass wrackinduced dune formation on a tropical coast (banc d'Arguin, Mauritania). Est Coast Shelf Sci 31: 499–502

    Google Scholar 

  • Hemminga MA and Duarte CM (2000) Seagrass Ecology (1st edition). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hemminga MA, Harrison PG and van Lent F (1991) The balance of nutrient losses and gains in seagrass meadows. Mar Ecol Prog Ser 71: 85–96

    Google Scholar 

  • Hemminga MA, Slim FJ, Kazungu J, Gansen GM, Nieuwenhize J and Kruit NM (1994) Carbon outwelling from a mangrove forest with adjacent beds and coral reefs (Gazi Bay, Kenya). Mar Ecol Prog Ser 106: 291–301

    Google Scholar 

  • Hemminga MA, Marbà N and Stapel J (1999) Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquat Bot 65: 141–158

    CAS  Google Scholar 

  • Henrichs SM (1992) Early diagenesis of organic matter in marine sediments: Progress and perplexity. Mar Chem 39: 119–149

    CAS  Google Scholar 

  • Henrichs SM (1993) Early diagenesis of organic matter: The dynamics (rates) of cycling of organic compounds. In: Engel MH and Macko SA (eds) Organic Geochemistry, pp 101–117. Plenum Press, New York

    Google Scholar 

  • Henrichs SM and Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology J 5: 191–237

    Google Scholar 

  • Herzka SA and Dunton KH (1997) Seasonal photosynthetic patterns of the seagrass Thalassia testudinum in the western Gulf of Mexico. Mar Ecol Prog Ser 152: 103–117

    Google Scholar 

  • Herzka SZ and Dunton KH (1998) Light and carbon balance in the seagrass Thalassia testudinum: Evaluation of current production models. Mar Biol 132: 711–721

    Google Scholar 

  • Hulthe G, Hulth S and Hall POJ (1998) Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim Cosmochim Acta 62: 1319–1328

    CAS  Google Scholar 

  • Jones BJ, Cifuentes LM and Kaldy JE (2003) Stable carbon isotope evidence for coupling between sedimentary bacteria and seagrasses in a sub-tropical lagoon. Mar Ecol Prog Ser 255: 15–25

    CAS  Google Scholar 

  • Josselyn MN, Cailliet G, Niesen T, Cowen R, Hurley A, Conner J and Hawes S (1983) Composition, export and faunal utilization of drift vegetation in the Salt River submarine canyon. Est Coast Shelf Sci 17: 447–465

    Google Scholar 

  • Josselyn MN, Fonseca M, Niesen T and Larson R (1986) Biomass, production and decomposition of a deep water seagrass, Halophila decipiens Ostenf. Aquat Bot 25: 47–61

    Google Scholar 

  • Josselyn MN and Mathieson AC (1980) Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary. Hydrobiologia 71: 197–208

    CAS  Google Scholar 

  • Kaldy JE and Dunton KH (2000) Above and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Mar Ecol Prog Ser 193: 271–283

    CAS  Google Scholar 

  • Kaldy JE, Onuf CP, Eldridge PM and Cifuentes LA (2002) Carbon budget for a subtropical dominated coastal lagoon: How important are seagrasses to total ecosystem net primary production? Estuaries 25: 528–539

    CAS  Google Scholar 

  • Keller BD (1983) Coexistence of sea urchins in seagrass meadows: An experimental analyses of competition and predation. Ecology 64: 1581–1598

    Google Scholar 

  • Kemp WM, Boynton WR, Twilley RR, Stevenson JC and Means JC (1983) The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes. Mar Technol Soc J 17: 78–89

    Google Scholar 

  • Kemp WM, Smith EM, Marvin-Di Pascuale M and Boynton WR (1997) Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Mar Ecol Prog Ser 150: 229–248

    CAS  Google Scholar 

  • Kenworthy WJ and Thayer GW (1984) Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia testudinum, in temperate and subtropical marine ecosystems. Bull Mar Sci 35: 364–379

    Google Scholar 

  • Kenworthy WJ, Currin C, Smith G and Thayer G (1987) The abundance, biomass and acetylene reduction activity of bacteria associated with decomposing rhizomes of two seagrasses, Zostera marina and Thalassia testudinum. Aquat Bot 27: 97–119

    CAS  Google Scholar 

  • Kirkman H and Reid DD (1979) A study of the role of the seagrass Posidonia australis in the carbon budget of an estuary. Aquat Bot 7: 173–183

    CAS  Google Scholar 

  • Kirkman H and Young P (1981) Measurement of health and echinoderm grazing on Posidonia oceanica (L.) Delile. Aquat Bot 10: 329–338

    Google Scholar 

  • Klap VA (1997) Biogeochemical aspects of salt marsh exchange processes in the SW Netherlands. Centre for Estuarine and Coastal Ecology, Netherlands Institute of Ecology (NIOO/CEMO). PhD Thesis, Amsterdam, University of Amsterdam

    Google Scholar 

  • Klap V, Hemminga MA and Boom JJ (2000) The retention of lignin in seagrasses: Angiosperms that returned to the sea. Mar Ecol Prog Ser 194: 1–11

    CAS  Google Scholar 

  • Klumpp DW, Salita-Espinosa JS and Fortes MD (1992) The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community. Aquat Bot 43: 327–349

    Google Scholar 

  • Klumpp DW, Salita-Espinosa JS and Fortes MD (1993) Feeding ecology and the trophic role of sea urchins in a tropical eagrass community. Aquat Bot 45: 205–229

    Google Scholar 

  • Koepfler ET, Benner R and Montagna PA (1994) Variability of dissolved organic carbon in sediments of a seagrass bed and an unvegetated area within an estuary in southernTexas. Estuaries 16: 391–404

    Google Scholar 

  • Kowalski JL, DeYoe HR, Allison TC and Kaldy JE (2001) Productivity estimation in Halodule wrightii: Comparison of leafclipping and leaf-marking techniques and the importance of clip height. Mar Ecol Prog Ser 220: 131–136

    Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24

    CAS  Google Scholar 

  • Lalli CM and Parsons TR (1993) Biological Oceanography: An Introduction. Pergamon, New York, USA

    Google Scholar 

  • LarkumAWDand den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses, pp 112–156. Elsevier Pub. Co., Amsterdam

    Google Scholar 

  • Larkum AWD and West RJ (1990) Long-term changes of seagrass meadows in Botany Bay, Australia. Aquat Bot 37: 55–70

    Google Scholar 

  • Leopold A (1949) A Sand County Almanac and Sketches Here and There. Oxford University Press, New York

    Google Scholar 

  • Lepoint G, Nyssen F, Gobert S, Dauby P and Bouquegneau JM (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar Biol 136: 513–518

    CAS  Google Scholar 

  • Lewis NG and Yamamoto E (1990) Lignin: Occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41: 455–496

    PubMed  CAS  Google Scholar 

  • Lipkin Y (1979) Quantitative aspects of seagrass communities, particularly of those dominated by Halophila stipulacea, in Sinai (Northern Red Sea). Aquat Bot 7: 119–128

    Google Scholar 

  • Loneragan NR, Bunn SE and Kellaway DM (1997) Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stableisotope study. Mar Biol 130: 289–300

    Google Scholar 

  • López NI, Duarte CM, Vallespinós F, Romero J and Alcoverro T (1995a) Bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 187: 39–49

    Google Scholar 

  • López P, Vidal M, lluch X and Morguí JA (1995b) Sediment metabolism in a transition continental/marine area: The Albufera of Majorca (Balearic Islands, Spain). Mar Freshwater Res 46: 45–53

    Google Scholar 

  • López NI, Duarte CM, Vallespinós F, Romero J and Alcoverro T (1998) The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 224: 155–166

    Google Scholar 

  • Lugo AE, Brown S and Brinson MM (1988) Forested wetlands in freshwater and salt-water environments. Limnol Oceanogr 33: 894–909

    CAS  Google Scholar 

  • Macia S and Lirman D (1999) Destruction of Florida Bay seagrasses by a grazing front of sea urchins. Bull Mar Sci 65: 593–601

    Google Scholar 

  • Macintyre IG, Littler MM and Littler DS (1995) Holocene history of Tobacco Range, Belize, Central America. Atoll Res Bull 430: 1–18

    Google Scholar 

  • Mann KH (1988) Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnol Oceanogr 33: 910–933

    CAS  Google Scholar 

  • Marbà N, Hemminga MA, Mateo MA, Duarte CM, Mass YEM, Terrados J and Gacia E (2002) Carbon and nutrient translocation between seagrass ramets. Mar Ecol Prog Ser 226: 287–300

    Google Scholar 

  • Margalef R (1986) Ecología. Ediciones Omega, S. A., Barcelona, Spain

    Google Scholar 

  • Mateo MA (submitted) Annual excess of seagrass leaf carbon production: elements for assessing and understanding the potential refractory accumulation derived from Posidonia oceanica in the Mediterranean. Limnol Oceanogr

    Google Scholar 

  • Mateo MA, Renom P, Hemminga MA and Peene J (2001) Measurement of seagrass production using the 13C stable isotope compared with classical O2 and 14C methods. Mar Ecol Prog Ser 223: 157–165

    Google Scholar 

  • Mateo MA, Renom P, Julià R, Romero J and Michener R (2002) An unexplored sedimentary record for the study of environmental change in Mediterranean coastal environments: Posidonia oceanica (L.) Delile peats. Int At Energy Agency CS Papers Ser 13/P: 163–173

    Google Scholar 

  • Mateo MA and Romero J (1996) Evaluating seagrass leaf litter decomposition: An experimental comparison between litterbag and oxygen-uptake methods. J Exp Mar Biol Ecol 202: 97–106

    Google Scholar 

  • Mateo MA and Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: Elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151: 43–53

    CAS  Google Scholar 

  • Mateo MA, Romero J, Perez M, Littler MM and Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Est Coast Shelf Sci 44: 103–110

    Google Scholar 

  • Mateo MA (submitted) A semi-quantitative method to estimate beach cast seagrass; the example of Alfacs Bay. J Exp Mar Biol Ecol

    Google Scholar 

  • Mateo MA, Sánchez-Lizaso JL and Romero J (2003) Posidonia oceanica 'Banquettes': A preliminary assessment of the relevance for meadow carbon and nutrients budget. Est Coast Shelf Sci 56: 85–90

    Google Scholar 

  • McGlathery KJ (1995) Nutrient and grazing influences on a subtropical seagrass community. Mar Ecol Prog Ser 122: 239–252

    Google Scholar 

  • McRoy CP (1974) Seagrass productivity: Carbon uptake experiments in eelgrass, Zostera marina. Aquaculture 4: 131–137

    CAS  Google Scholar 

  • McRoy CP and Helfferich C (1977) Seagrass Ecosystems: A Scientific Perspective. Marcel Dekker, Inc., New York

    Google Scholar 

  • McRoy CP and McMillan C (1977) Production ecology and physiology of seagrasses. In: McRoy CP and Helfferich C (eds) Seagrass Ecosystems: A Scientific Perspective, pp 53–81. Dekker, New York

    Google Scholar 

  • Melillo JM, Aber JD and Muratore JM (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626

    CAS  Google Scholar 

  • Melillo JM, Naiman RJ, Aber JD and Linkins AE (1984) Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull Mar Sci 35: 341–356

    Google Scholar 

  • Middleburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T and Heip CHR (2000) The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnol Oceanogr 45: 1224–1234

    Google Scholar 

  • Middleton BA and Mckee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89: 818–828

    Google Scholar 

  • Miller HL and Dunton KH (2003) Stable isotope 13C and O2 micro-optode alternatives for measuring photosynthesis in marine seaweeds. Mar Ecol Prog Ser (in press)

    Google Scholar 

  • Moncreiff CA and Sullivan MJ (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 215: 93–106

    CAS  Google Scholar 

  • Moncreiff CA, Sullivan MJ and Daehnick AE (1992) Primary production dynamics in seagrass beds of Mississippi Sound: The contributions of seagrass, epiphytic algae, sand microflora and phytoplankton. Mar Ecol Prog Ser 87: 161–171

    Google Scholar 

  • Moriarty DJW, Iverson RL and Pollard PC (1986) Exudation of organic carbon by the seagrass Halodule wrightii Aschers. and its effect on bacterial growth in the sediment. J Exp Mar Biol Ecol 96: 115–126

    CAS  Google Scholar 

  • Mukai H and Iijima (1996) Grazing effects of a gammaridean Amphipoda, Ampithoe sp., on the seagrass, Syringodium isoetifolium, and epiphytes in atropical seagrass bed of Fiji. Ecol Res 10: 243–257

    Google Scholar 

  • Mutchler T, Sullivan MJ and Fry B (2004) Potential of 14Nisotope enrichment to resolve ambiguities in coastal trophic relationships. Mar Ecol Prog Ser 266: 27–33

    Google Scholar 

  • Ochieng CA and Erftemeijer PLA (1999) Accumulation of seagrass beach cast along the Kenyan coast: A quantitative assessment. Aquat Bot 65: 221–238

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331

    Google Scholar 

  • Onuf CP (1994) Seagrasses, dredging and light in Laguna Madre, Texas, U. S. A. Est Coast Shelf Sci 39: 75–91

    Google Scholar 

  • Ottosen LMD, Risgaard-Petersen N, Nielsen LP and Dalsgaard T (2001) Denitrification in exposed intertidal mud-flats, measured with a new 15N-ammonium spray technique. Mar Ecol Prog Ser 209: 35–42

    Google Scholar 

  • Pellikaan GC (1984) Laboratory experiments on eelgrass (Zostera marina, L.) decomposition. Neth J Sea Res 18: 360–383

    CAS  Google Scholar 

  • Pérez M and Camp J (1986) Distribución espacial y biomasa de las fanerógamas marinas de las bahías del delta del Ebro. Invest Pesqueras 504: 519–530

    Google Scholar 

  • Pérez M, Mateo MA, Alcoverro T and Romero J (2001) Variability in detritus stocks in beds of the seagrass Cymodocea nodosa. Bot Mar 44: 523–531

    Google Scholar 

  • Pérez M and Romero J (1994) Growth dynamics, production and nutrient status of the seagrass Cymodocea nodosa in a Mediterranean semi-estuarine environment. PSZNI Mar Ecol 15: 51–64

    Google Scholar 

  • Pergent G (1987) Recherches lépidochronologiques chez Posidonia oceanica (Potamogetonaceae). Fluctuacions des paramètres anatomiques et morphologiques des écailles des rhizomes. PhD Thesis, Université Aix-Marseille II

    Google Scholar 

  • Pergent G, Romero J, Pergent-Martini C, Mateo MA and Boudouresque CF (1994) Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser 106: 139–146

    Google Scholar 

  • Peterson BJ, Deegan L, Helfrich J, Hobbie JE, Hullar M, Bernie M, Ford TE, Hershey A and Hiltner A (1993) Biological responses of a tundra river to fertilization. Ecology 74: 653–672

    CAS  Google Scholar 

  • Peterson BJ, Howarth RW and Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361–1363

    Google Scholar 

  • Petersen CGJ (1914) Om Baendeltangens (Zostera marina) Aars-produktion i de denaske Farvande [in Danish, English summary], No. 9. In: Jungersen FE and Warming JEB (eds) Mindeskrift i Anledning af Hundredaaret for Japetus Steenstrups Fodsel, p 20. B. Lunos Bogtrykkeri, Copenhagen

    Google Scholar 

  • Pirc H (1986) Seasonal aspects of photosynthesis in Posidonia oceanica: Influence of depth, temperature and light intensity. Aquat Bot 26: 203–212

    Google Scholar 

  • Pirc H (1989) Seasonal changes in soluble carbohydrates, starch and energy content in Mediterranean seagrasses. Mar Ecol 10: 97–106

    CAS  Google Scholar 

  • Pollard PC and Kogure K (1993) The role of epiphytic and epibenthic algae to the primary production of a tropical seagrass bed. Aust J Mar Freshw Res 44: 141–154

    CAS  Google Scholar 

  • Preen A (1995) Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. Mar Ecol Prog Ser 124: 201–213

    Google Scholar 

  • Ralph PJ, Gademann R and Dennison WC (1998) In situ seagrass photosynthesis measured using a submersible, pulseamplitude and modulated fluorometer. Mar Biol 132: 367–373

    Google Scholar 

  • Robbins CT, Hanley TA, Hagerman AE, Hjeljord O, Baker DL, Schwartz CC and Mautz WW (1987) Role of tannins in defending plants against ruminants: Reduction in protein availability. Ecology 68: 98–107

    CAS  Google Scholar 

  • Romero J, Pérez M, Mateo MA and Sala E (1994) The below-ground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat Bot 47: 13–19

    Google Scholar 

  • Romero J, Pergent G, Pergent-Martini C, Mateo MA and Regnier C (1992) The detritic compartment in a Posidonia oceanica meadow: Litter features, decomposition rates and mineral stocks. PSZNI Mar Ecol 13: 69–83

    CAS  Google Scholar 

  • Rose CD, Sharp WC, Kenworthy WJ, Hunt JH, Lyons WG, Prager EJ, Valentine JF, Hall MO, Whitfield PE and Fourqurean JW (1999) Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay. Mar Ecol Prog Ser 190: 211–222

    Google Scholar 

  • Roth IG and Hayasaka SS (1984) Seasonal distribution and partial characterization of anaerobic cellulolytic bacteria associated with North Carolina Zostera marina seagrass bed sediment. Bot Mar 27: 203–210

    Google Scholar 

  • Sala E (1997) The role of fishes in the organization of a Mediterranean sublittoral community. 2: Epifaunal communities. J Environ Mar Biol Ecol 212: 45–60

    Google Scholar 

  • Sala E, Ribes M, Hereu B, Zabala M, Alva V, Coma R and Garrabou J (1998) Temporal variability in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula in the northwestern Mediterranean: Comparison between a marine reserve and an unprotected area. Mar Ecol Prog Ser 168: 135–145

    Google Scholar 

  • Sand-Jensen K and Borum J (1983) Regulation of growth of eelgrass (Zostera marina L.) in Danish coastal waters. Mar Technol Soc J 17: 15–21

    Google Scholar 

  • Shepherd SA (1987) Grazing by the sea-urchin Paracentrotus lividus in Posidonia oceanica beds at Banyuls, France. In: Boudouresque CF (ed) Colloque International sur Paracentrotus lividus et les Oursins Comestibles, pp 83–96. GIS Posidonie, Marseille

    Google Scholar 

  • Shepherd SA and Sprigg RC (1976) Substrate, sediments and subtidal ecology of Gulf St Vincent. Dep Agric Fisheries 5: 161–174

    Google Scholar 

  • Short FT and Burdick DM (1996) Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19: 730–739

    Google Scholar 

  • Short FT and Coles RG (eds) (2001) Global Seagrass Research Methods (1st edition). Elsevier, New York, USA

    Google Scholar 

  • Simenstad CA and Wissmar RC (1985) Delta 13-C evidence of the origins and fates of organic carbon in estuarine and nearshore food webs. Mar Ecol Prog Ser 22: 141–152

    Google Scholar 

  • Smith SV (1981) Marine macrophytes as a global carbon sink. Science 211: 838–840

    CAS  Google Scholar 

  • Smith SV and Hollibaugh JT (1997) Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecol Monogr 67: 509–533

    Google Scholar 

  • Stapel J, Hemminga MA, Bogert CG and Maas YEM (2001) Nitrogen (15N) retention in small Thalassia hemprichii seagrass plots in an offshore meadow in South Sulawesi, Indonesia. Limnol Oceanogr 46: 24–37

    CAS  Google Scholar 

  • Stapel J, Nijboer R and Philipsen B (1996) Initial estimates of the export of leaf litter from a seagrass bed in the Spermonde archipielago, south Sulawesi, Indonesia. In: Kuo J, Philips LC, Walker DI and Kirkman H (eds) Seagrass Biology. Proceedings of an International Workshop, pp 155–162. Rottnest Island, Western Australia

    Google Scholar 

  • Sterner RW and Elser JJ (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA

    Google Scholar 

  • Stevenson JC (1988) Comparative ecology of submersed grass beds in freshwater, estuarine and marine environments. Limnol Oceanogr 33: 867–893

    CAS  Google Scholar 

  • Stumm W and Morgan JJ (1981) Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters. John Wiley & Sons, New York

    Google Scholar 

  • Swift MJ, Heal OW and Anderson JM (1979) Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Thayer GW, Bjorndal KA, Ogden JC, Williams SL and Zieman JC (1984) Role of larger herbivores in seagrass communities. Estuaries 7: 351–376

    Google Scholar 

  • Tomasko DA and Dunton KH (1995) Primary productivity in Halodule wrightii: A comparison of techniques based on daily carbon budgets. Estuaries 18: 271–278

    CAS  Google Scholar 

  • Touchette BW and Burkholder JM (2000) Overview of the physiological ecology of carbon metabolism in seagrasses. J Environ Mar Biol Ecol 250: 169–205

    CAS  Google Scholar 

  • Valentine JF and Heck KL Jr (1991) The role of sea urchin grazing in regulating subtropical seagrass meadows: Evidence from field manipulations in the northern Gulf of Mexico. J Environ Mar Biol Ecol 154: 215–230

    Google Scholar 

  • Valentine JF and Heck KL Jr (1999) Seagrass herbivory: Evidence for the continued grazing of marine grasses. Mar Ecol Prog Ser 176: 291–302

    Google Scholar 

  • Valentine JF and Heck KL Jr (2001) The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. J Environ Mar Biol Ecol 258: 65–86

    CAS  Google Scholar 

  • Valentine JF, Heck KL Jr, Kirsch KD and Webb D (2000) Role of sea urchin Lytechinus variegatus grazing in regulating subtropical turtlegrass Thalassia testudinum meadows in the Florida keys (USA). Mar Ecol Prog Ser 200: 213–228

    Google Scholar 

  • Valiela I (1995) Marine Ecological Processes (2nd edition). Springer-Verlag, New York, USA

    Google Scholar 

  • Valiela I, Wilson J, Buchsbaum R, Rietsma C, Bryant D, Foreman K and Teal J (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35: 261–269

    Google Scholar 

  • Velimirov B (1984) Grazing of Salpa salpa L. on Posidonia oceanica and utilization of soluble compounds. In: Boudouresque CF, Grissac AJd and Olivier J (eds) I International Workshop on Posidonia oceanica Beds. 381–387. GIS Posidonie, 1. Marseille, France

    Google Scholar 

  • Velimirov B and Walenta-Simon M (1993) Bacterial growth rates and productivity within a seagrass system: Seasonal variations in a Posidonia oceanica bed. Mar Ecol Prog Ser 96: 101–107

    Google Scholar 

  • Vermaat JE, Hootsmans MJM and Nienhuis PH (1987) Seasonal dynamics and leaf growth of Zostera noltii Hornem., a perennial intertidal seagrass. Aquat Bot 28: 287–299

    Google Scholar 

  • Virnstein RW (1982) Leaf growth rate of the seagrass Halodule wrightii photographically measured in situ. Aquat Bot 12: 209–218

    Google Scholar 

  • Vizzini S, Sarà G, Mateo MA and Mazzola A (2003) δ 13C and δ 15N variability in Posidonia oceanica associated with seasonality and plant fraction. Aquat Bot 76: 195–202

    CAS  Google Scholar 

  • Walker DI and McComb AJ (1985) Decomposition of leaves from Amphibolis antarctica (Labill.) Sonder et Aschers. and Posidonia australis Hook. F., the major seagrass species of Shark Bay, Western Australia. Bot Mar 28: 407–413

    Google Scholar 

  • Warner BG, Clymo RS and Tolonen K (1993) Implications of peat accumulation at Point Escuminac, New Brunswick. Quaternary Res 39: 245–248

    Google Scholar 

  • Welsh DT, Bartoli M, Nizzoli D, Castaldelli G, Riou SA and Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser 208: 65–77

    Google Scholar 

  • West RJ and Larkum AWD (1979) Leaf productivity of the seagrass Posidonia australis in eastern Australian waters. Aquat Bot 7: 57–65

    Google Scholar 

  • Wetzel RL and Neckles HA (1986) A model of Zostera marina L. photosynthesis and growth: Simulated effects of selected physical-chemical variables and biological interactions. Aquat Bot 26: 307–323

    Google Scholar 

  • Williams SL (1988) Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Mar Biol 98: 447–455

    Google Scholar 

  • Winning MA, Connolly RM, Loneragan NR and Bunn SE (1999) 15N enrichment as a method of separating the isotopic signatures of seagrass and its epiphytes for food web analysis. Mar Ecol Prog Ser 189: 289–294

    CAS  Google Scholar 

  • Yamamuro M (1999) Importance of epiphytic cyanobacteria as food sources for heterotrophs in a tropical seagrass bed. Coral Reefs 18: 263–271

    Google Scholar 

  • Ziegler S and Benner R (1998) Ecosystem metabolism in a subtropical, seagrass-dominated lagoon. Mar Ecol Prog Ser 173: 1–12

    Google Scholar 

  • Ziegler S and Benner R (1999) Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar Ecol Prog Ser 180: 149–160

    Google Scholar 

  • Zieman JC (1974) Methods for the study of the growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture 4: 139–143

    Google Scholar 

  • Zieman JC (1975) Quantitative and dynamic aspects of the ecology of turtlegrass, Thalassia testudinum. In: Cronin LE (ed) Estuarine Research, Vol 1, pp 541–562. Academic Press, New York

    Google Scholar 

  • Zieman JC (1982) The ecology of the seagrasses of south Florida: A community profile. Biol. Serv. Program. U. S. Fish Wildl. Serv. FWX/OBX/82/25

    Google Scholar 

  • Zieman JC, Thayer G, Robblee M and Zieman R (1979) Production and export of seagrasses from a tropical bay. In: Livingston RJ (ed) Ecological Processes in Coastal and Marine Systems, pp 21–33. Plenum Press, New York

    Google Scholar 

  • Zieman JC, Iverson RL and Ogden JC (1984) Herbivory effects on Thalassia testudinum leaf growth and nitrogen content. Mar Ecol Prog Ser 15: 151–158

    CAS  Google Scholar 

  • Zimmerman RC (2003) A biooptical model of irradiance distribution and photosynthesis in seagrass canopies. Limnol Oceanogr 48: 568–585

    Google Scholar 

  • Zimmerman RC, Smith RD and Alberte RS (1989) Thermal acclimation and whole-plant carbon balance in Zostera marina L. (eelgrass). J Environ Mar Biol Ecol 130: 93–109

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mateo, M.A., Cebrián, J., Dunton, K., Mutchler, T. (2007). 7. In: SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_7

Download citation

Publish with us

Policies and ethics