Skip to main content

Ethylene Biosynthesis

  • Chapter
Plant Hormones

Abstract

Ethylene, the simplest olefine, is present in nature at trace amounts. It is produced either chemically through the incomplete combustion of hydrocarbons and biologically by almost all living organisms (2). Low levels of ethylene have been found in the expired gases of animals that are generated through a lipid peroxidation pathway. Many microbes among bacteria and fungi produce ethylene from two possible pathways: (i) a methionine and 2-oxo-4-methylthiobutyric acid (KMBA1) pathway in which ethylene is formed from KMBA by chemical reaction, and (ii) an α- ketoglutaric acid (KGA) pathway in which KGA is generated from glucose and many other substrates and an ethylene-forming enzyme having very divergent sequence with the enzyme responsible for the last step of ethylene biosynthesis in higher plants (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana J Biol Chem 270: 19093-19099

    Article  CAS  PubMed  Google Scholar 

  2. Abeles FB, Morgan PW, Saltveit Jr ME (1992) Ethylene in plant biology. Academic Press, New York. 414 p

    Google Scholar 

  3. Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53: 2039-2055

    Article  CAS  PubMed  Google Scholar 

  4. Arshad M, Frakenberger Jr WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic Publishers, New York, 342 p

    Google Scholar 

  5. Arteca JM, Arteca RN (1999) A multi-responsive gene encoding 1-amino-cyclopropane- 1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39: 209-219

    Article  CAS  PubMed  Google Scholar 

  6. Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotech 14: 862-866

    Article  CAS  Google Scholar 

  7. Barlow JN, Zhang Z, John P, Baldwin JE, Schofield CJ (1997) Inactivation of 1- aminocyclopropane-1-carboxylate oxidase involves oxidative modifications. Biochem 36:3563-3569

    Article  CAS  Google Scholar 

  8. Bidonde S, Ferrer MA, Zegzouti H, Ramassamy S, Latché A, Pech JC, Hamilton AJ, Grierson D, Bouzayen M (1998) Expression and characterization of three tomato 1- aminocyclopropane-1carboxylate oxidase cDNAs in yeast. Eur J Biochem 253: 20-26

    Article  CAS  PubMed  Google Scholar 

  9. Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15: 545-559

    Article  CAS  PubMed  Google Scholar 

  10. Charng YY, Chou SJ, Jiaang WT, Chen ST, Yang SF (2001) The catalytic mechanism of aminocyclopropane-1-carboxylic acid oxidase. Arch Biochem Biophys 385:179-185

    Article  CAS  PubMed  Google Scholar 

  11. Chung M-C, Chou S-J, Kuang L-Y, Charng Y, Yang SF (2002) Subcellular localisation of 1-aminocyclopropane-1-carboxylic acid oxidase in apple fruit. Plant Cell Physiol 43: 549-554

    Article  CAS  PubMed  Google Scholar 

  12. Clendennen SK, Kellogg JA, Wolff KA, Matsumura W, Peters S, Vanwinkle JE, Copess B, Pieper W, Kramer MG (1999) Genetic engineering of cantaloupe to reduce ethylene biosynthesis and control ripening. In A K Kanellis, et al. (eds), Biology and Biotechnology of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, pp. 371-379

    Google Scholar 

  13. Cosgrove DJ, Gilroy S, Kao T, Ma H, Schulz C (2000) Plant signaling (2000) Cross talk among geneticists, physiologists, and ecologists. Plant Physiol 124: 499-505

    Article  CAS  PubMed  Google Scholar 

  14. De Martinis D, Mariani C (1999) Silencing gene expression of the ethylene-forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco plants. Plant Cell 11: 1061-1071

    Article  PubMed  Google Scholar 

  15. Fluhr R, Mattoo AK (1996) Ethylene biosynthesis and perception. Crit Rev Plant Sciences 15:479-523

    CAS  Google Scholar 

  16. Good X, Kellogg JA, Wagoner W, Langhoff D, Matsumura W, Bestwick RK (1994) Reduced ethylene synthesis by trangenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol Biol 26: 781-790

    Article  CAS  PubMed  Google Scholar 

  17. Guzman P, Ecker JR (1990) Exploiting the tripe response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513-523

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284-287

    Article  CAS  Google Scholar 

  19. Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) β- cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Phyiol 123: 1163-1171

    Article  CAS  Google Scholar 

  20. Hegg EL, Que Jr L (1997) The 2-His-1-carboxylate facial triad, an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur J Biochem 250: 625-629

    Article  CAS  PubMed  Google Scholar 

  21. Henzi MX, McNeil DL, Christey MC, Lill RE (1999) A tomato antisense 1- aminocyclopropane-1-carboxylic acid oxidase gene causes reduced ethylene production in transgenic broccoli. Aust J Plant Physiol 26:179-183

    Article  CAS  Google Scholar 

  22. Huai Q, Xia Y, Chen Y, Callahan B, Li N, Ke H (2001) Crystal structures of 1- aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyrydoxal-5’-phosphate provide new insight into catalytic mechanism. J Biol Chem 276:38210-38216

    Article  CAS  PubMed  Google Scholar 

  23. Kahana A, Silberstein L, Kessler N, Goldstein RS, Perl-Treves R (1999) Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol 41: 517-528

    Article  CAS  PubMed  Google Scholar 

  24. Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44, 283-307

    Article  CAS  Google Scholar 

  25. Klee H J (1993) Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum) plants with reduced ethylene synthesis. Plant Physiol 102: 911-916

    CAS  PubMed  Google Scholar 

  26. Lelièvre JM, Latché A, Jones B, Bouzayen M, Pech JC (1997) Ethylene and fruit ripening. Physiol Plant 101: 727-739

    Article  Google Scholar 

  27. Liang X, Abel S, Keller JA, Shen NF, Theologis A (1992) The 1-amino-cyclopropane- 1-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 11046-11050

    Article  CAS  PubMed  Google Scholar 

  28. Lieberman M (1979) Biosynthesis and action of ethylene. Annu Rev Plant Physiol 30, 533-591

    Article  CAS  Google Scholar 

  29. McMahon Smith J, Arteca RN (2000) Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol Plant 109: 180-187

    Article  Google Scholar 

  30. Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Inaba KY (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1- carboxylate synthase, 1-aminocyclopropane-1-carboxylic acid oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118: 1295-1305

    Article  CAS  PubMed  Google Scholar 

  31. Oeller PW, Min-Wong L, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437-439

    Article  CAS  PubMed  Google Scholar 

  32. Osborne DJ, Walters J, Milborrow BV, Norville A, Stange LM C (1996) Evidence for a non-ACC ethylene biosynthesis pathway in lower plants. Phytochem 42: 51-60

    Article  CAS  Google Scholar 

  33. Pedreño MA, Bouzayen M, Pech JC, Marigo G, Latché A (1991) Vacuolar release of 1- (malonylamino)cyclopropane-1-carboxylic acid, the conjugated form of the ethylene precursor. Plant Physiol 97:1483-1486

    Article  PubMed  Google Scholar 

  34. Peiser G, Yang SF (1998) Evidence for 1- (malonylamino)cyclopropane-1-carboxylic acid being the major conjugate of aminocyclopropane-1-carboxylic acid in tomato fruit. Plant Physiol 116: 1527-1532

    Article  CAS  PubMed  Google Scholar 

  35. Peñarrubia L, Aguilar M, Margossian L, Fischer RL (1992) An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4: 681-687

    Article  PubMed  Google Scholar 

  36. Prescott AG, John P (1996) Dioxygenases: molecular structure and role in plant metabolism. Annu Rev Plant Physiol Plant Mol Biol 47: 245-271

    Article  CAS  PubMed  Google Scholar 

  37. Ramassamy S, Olmos E, Bouzayen M, Pech JC, Latché A (1998) 1-aminocyclopropane- 1-carboxylate oxidase of apple fruit is periplasmic. J Exp Bot 49: 1909-1915

    Article  CAS  Google Scholar 

  38. Rodrigues-Pousada RA, Rycke RD, Dedonder A, Van Caeneghem W, Engler G, Van Montagu M, Van der Straeten D (1993) The Arabidopsis 1-aminocyclopropane-1- carboxylate gene 1 is expressed during early development. Plant Cell 5:897-911

    Article  CAS  PubMed  Google Scholar 

  39. Saftner RA, Baker JE (1987) Transport and compartmentation of 1-aminocyclopropane- 1-carboxylic acid and its structural analogs, α-aminoisobutyric acid, in tomato pericarp slices.Plant Physiol 84: 311-317

    Article  CAS  PubMed  Google Scholar 

  40. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616

    Article  CAS  PubMed  Google Scholar 

  41. Savin K W, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu CY, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. HortScience 30:970-972

    CAS  Google Scholar 

  42. Spanu P, Grosskopf DG, Felix G, Boller T (1994) The apparent turnover of 1- aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol 106: 529-535

    CAS  PubMed  Google Scholar 

  43. Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotech Adv 21:193-210

    Article  CAS  Google Scholar 

  44. Stella L, Wouters S, Baldellon F (1996) Chemical and biochemical aspects of the biosynthesis of ethylene, a plant hormone. Bull Soc Chim Fr 133: 1141-1145

    Google Scholar 

  45. Tarun AS, Theologis A (1998) Complementation analysis of mutants of 1-aminocyclopropane- 1-carboxylate reveals the enzyme is a dimer with shared active sites. J Biol Chem 273: 12509-12514

    Article  CAS  PubMed  Google Scholar 

  46. Tatsuki M, Mori H (2001) Phosphorylation of tomato 1-aminocyclopropane-1- carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem 276: 28051-28057

    Article  CAS  PubMed  Google Scholar 

  47. Theophrastus (372-287 BC) Enquiring into plants, (IV II 1-3). Translated to English by A. Hart, 1961, W. Heinemann, Ed. London, vol IV, p293.

    Google Scholar 

  48. Tophop S, Martinoia E, Kaiser G, Hartung W, Amrheinn N (1989) Compartmentation and transport of 1-aminocyclopropane-1-carboxylic acid and N-malonyl-1-aminocyclopropane- 1-carboxylic acid in barley and wheat mesophyll cells and protoplasts. Physiol Plant 75: 333-339

    Article  Google Scholar 

  49. Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95: 4766-4771

    Article  CAS  PubMed  Google Scholar 

  50. Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. The Plant Cell, Sup 2002: S131-S151

    Google Scholar 

  51. Wang NN, Yang SF, Charng Y (2001) Differential expression of 1-aminocyclopropane- 1-carboxylate synthase genes during orchid flower senescence induced by the protein phosphatase inhibitor okadaic acid. Plant Physiol 126: 253-260

    Article  CAS  PubMed  Google Scholar 

  52. Whittaker DJ, Smith GS, Gardner R C (1997) Expression of ethylene biosynthesis genes in Actinidia chinensis fruit. Plant Mol Biol 34: 45-55

    Article  CAS  PubMed  Google Scholar 

  53. Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119: 521-529

    Article  CAS  PubMed  Google Scholar 

  54. Yang SF, Hoffman N E (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155-189

    Article  CAS  Google Scholar 

  55. Zhou J, Rocklin AM, Lipscomb JD, Que Jr L, Solomon EI (2002) Spectroscopic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: molecular mechanism and CO2 activation in the biosynthesis of ethylene. J Amer Chem Soc 124: 4602-4609

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Pech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pech, JC., Latché, A., Bouzayen, M. (2010). Ethylene Biosynthesis. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_6

Download citation

Publish with us

Policies and ethics