Skip to main content

Nonlinear Regularization for Large-Eddy Simulation

  • Conference paper
Direct and Large-Eddy Simulation V

Part of the book series: ERCOFTAC Series ((ERCO,volume 9))

  • 894 Accesses

Abstract

We review the spatial filtering approach to large-eddy simulation and describe the intuitive dissipation and similarity requirements, commonly imposed on models for the turbulent stress. Then we present direct regularization of the nonlinear convective flux which provides a systematic framework for deriving the implied subgrid model. This approach allows one to incorporate several rigorous mathematical properties of solutions to the Navier-Stokes system into the modeled large-eddy formulation. Regularization maintains the central transport structure of the governing equations. We illustrate the approach with Leray regularization and the Lagrangian averaged Navier-Stokes-α model. The new subgrid models are applied to turbulent mixing. These models display a strongly improved accuracy of predictions compared to dynamic subgrid models, as well as robustness at high Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardina, J., Ferziger, J.H., Reynolds, W.C.: 1984. Improved turbulence models based on LES of homogeneous incompressible turbulent flows. Department of Mechanical Engineering. Report No. TF-19, Stanford.

    Google Scholar 

  • Foias, C., Holm, D.D., Titi, E.S.: 2001. The Navier-Stokes-alpha model of fluid turbulence. Physica D, 152, 505.

    Article  MathSciNet  ADS  Google Scholar 

  • Germano, M.: 1986. Differential filters for the large-eddy numerical simulation of turbulent flows. Phys. of Fluids, 29, 1755.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Germano, M.: 1992. Turbulence: the filtering approach. J. Fluid Mech., 238, 325.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Geurts, B.J.: 1997. Inverse modeling for large-eddy simulation. Phys. of Fluids, 9, 3585.

    Article  ADS  Google Scholar 

  • Geurts, B.J., Froehlich, J.: 2002. A framework for predicting accuracy limitations in large-eddy simulation. Phys. offluids, 14, L41.

    Article  ADS  Google Scholar 

  • Geurts, B.J., Holm, D.D.: 2002. Alpha-modeling strategy for LES of turbulent mixing. Turbulent Flow Computation. Eds: D. D.ikakis, B.J. Geurts. Fluid mechanics and its applications 66, Kluwer Academic Publishers, 237.

    Google Scholar 

  • Geurts, B.J., Holm, D.D.: 2003. Regularization modeling for large-eddy simulation. Phys. of Fluids, 15, L13.

    Article  MathSciNet  ADS  Google Scholar 

  • Geurts, B.J.: 2003. Elements of direct and large-eddy simulation. Edwards Publishing, Inc.

    Google Scholar 

  • Ghosal, S.: 1999. Mathematical and physical constraints on large-eddy simulation of turbulence. AIAA J., 37, 425.

    Article  ADS  Google Scholar 

  • Holm, D.D.: 1999. Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion. Physica D, 133, 215.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kuerten, J.G.M., Geurts, B.J., Vreman, A.W., Germano, M.: 1999. Dynamic inverse modeling and its testing in large-eddy simulations of the mixing layer. Phys. of Fluids, 11, 3778.

    Article  ADS  MATH  Google Scholar 

  • Leray, J.: 1934. Sur les movements d’un fluide visqueux remplaissant l’espace. Acta Mathematica, 63, 193.

    Article  MathSciNet  MATH  Google Scholar 

  • Lilly, D.K.: 1992. A proposed modification of the Germano subgrid-scale closure method. Phys. of Fluids A, 4, 633.

    Article  ADS  Google Scholar 

  • Meneveau, C., Katz, J.: 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32, 1.

    Article  MathSciNet  ADS  Google Scholar 

  • Smagorinsky, J.: 1963. General circulation experiments with the primitive equations. Mon. Weather Rev., 91, 99.

    Article  ADS  Google Scholar 

  • Stolz, S., Adams, N.A.: 1999. An approximate deconvolution procedure for large-eddy simulation. Phys. of Fluids, 11, 1699.

    Article  ADS  MATH  Google Scholar 

  • Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: 1994. Realizability conditions for the turbulent stress tensor in large eddy simulation. J. Fluid Mech., 278, 351.

    Article  ADS  MATH  Google Scholar 

  • Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: 1997. Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech., 339, 357.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Geurts, B.J., Holm, D.D. (2004). Nonlinear Regularization for Large-Eddy Simulation. In: Friedrich, R., Geurts, B.J., Métais, O. (eds) Direct and Large-Eddy Simulation V. ERCOFTAC Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2313-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2313-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6575-9

  • Online ISBN: 978-1-4020-2313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics