Skip to main content

Evolutionary Approach to Quantum and Reversible Circuits Synthesis

  • Chapter
Artificial Intelligence in Logic Design

Abstract

The paper discusses the evolutionary computation approach to the problem of optimal synthesis of Quantum and Reversible Logic circuits. Our approach uses standard Genetic Algorithm (GA) and its relative power as compared to previous approaches comes from the encoding and the formulation of the cost and fitness functions for quantum circuits synthesis. We analyze new operators and their role in synthesis and optimization processes. Cost and fitness functions for Reversible Circuit synthesis are introduced as well as local optimizing transformations. It is also shown that our approach can be used alternatively for synthesis of either reversible or quantum circuits without a major change in the algorithm. Results are illustrated on synthesized Margolus, Toffoli, Fredkin and other gates and Entanglement Circuits. This is for the first time that several variants of these gates have been automatically synthesized from quantum primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Rabadi, A., Casperson, L., Perkowski, M. & Song, X. (2002). Canonical Representation for Two-Valued Quantum Computing. Proc. Fifth Intern. Workshop on Boolean Problems, 23–32. Freiberg, Sachsen, Germany, September 19–20.

    Google Scholar 

  • Al-Rabadi, A. (2002). Novel Methods for Reversible Logic Synthesis and Their Application to Quantum Computing. Ph.D. Thesis, Portland State University, Portland, Oregon, USA, October 24.

    Google Scholar 

  • Barenco, A. et al. (1995). Elementary Gates for Quantum Computation. Physical Review A 52: 3457–3467.

    Article  MathSciNet  Google Scholar 

  • Bennett, C. (1973). Logically Reversible Computation. I.B.M. J. Res. Dev. (17): 525–632.

    MATH  Google Scholar 

  • Cirac, J. I. & Zoller, P. (1995). Quantum Computation with Cold Trapped Ions. Physical Review Letters (15 May) 74: Issue 20, 4091–4094.

    Article  Google Scholar 

  • Dill, K. & Perkowski, M. (2001). Baldwinian Learning utilizing Genetic and Heuristic for Logic Synthesis and Minimization of Incompletely Specified Data with Generalized ReedMuller (AND-EXOR) Forms. Journal of System Architecture 47: Issue 6, 477–489.

    Article  Google Scholar 

  • Dirac, P. A. M. (1930). The Principles of Quantum Mechanics, 1st edn. Oxford University Press.

    MATH  Google Scholar 

  • DiVincenzo, D. P. (1995). Quantum Computation. Science 270: 255–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Dueck, G. W. & Maslov, D. (2003). Garbage in Reversible Designs of Multiple-Output Functions. Proc. RM: 162–170.

    Google Scholar 

  • Einstein, A., Podolsky, B. & Rosen, N. (1935). Physical Review (47): 777.

    Article  MATH  Google Scholar 

  • Ekert, A. & Jozsa, R. (1996). Quantum Computation and Shor’s Factoring Algorithm. Review of Modern Physics (July) 68: Issue 3, 733–753.

    Article  MathSciNet  Google Scholar 

  • Feynman, R. (1996). Feynman Lectures on Computation. Addison Wesley.

    Google Scholar 

  • Fredkin, E. & Toffoli, T. (1982). Conservative Logic. Int. J. of Theoretical Physics (21): 219–253.

    Google Scholar 

  • Ge, Y. Z., Watson, L. T. & Collins, E. G. (1998). Genetic Algorithms for Optimization on a Quantum Computer. In Unconventional Models of Computation, 218–227. London: Springer Verlag.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley.

    MATH  Google Scholar 

  • Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications. Chichester, UK: Ellis Horwood Limited.

    MATH  Google Scholar 

  • Hirvensalo, M. (2001). Quantum Computing. Springer Verlag.

    MATH  Google Scholar 

  • Iwama, K., Kambayashi, Y. & Yamashita, S. (2002). Transformation Rules for Designing CNOT based Quantum Circuits. In Proc. DAC, 419–424. New Orleans, Louisiana.

    Google Scholar 

  • Kerntopf, P. (2001). Maximally Efficient Binary and Multi-Valued Reversible Gates. In Proceedings of ULSI Workshop, 55–58. Warsaw, Poland, May.

    Google Scholar 

  • Kerntopf, P. (2000). A Comparison of Logical Efficiency of Reversible and Conventional Gates. Proc. of 3rd Logic Design and Learning Symposium (LDL). Portland, Oregon.

    Google Scholar 

  • Khan, M. H. A., Perkowski, M. & Kerntopf, P. (2003). Multi-Output Galois Field Sum of Products Synthesis with New Quantum Cascades. In Proceedings of 33rd International Symposium on Multiple-Valued Logic, ISMVL 2003, 146–153. Meiji University, Tokyo, Japan, 16–19 May.

    Chapter  Google Scholar 

  • Khlopotine, A., Perkowski, M. & Kerntopf, P. (2002). Reversible Logic Synthesis by Gate Composition. Proceedings of IWLS: 261–266.

    Google Scholar 

  • Kim, J., Lee, J-S. & Lee, S. (2000). Implementation of the Refined Deutsch-Jozsa algorithm on a Three-Bit NMR Quantum Computer. Physical Review A 62: 022312.

    Article  Google Scholar 

  • Kim, J., Lee, J-S. & Lee, S. (2000). Implementing Unitary Operators in Quantum Computation. Physical Review A: 032312.

    Google Scholar 

  • Klay, M. (1988). Einstein-Podolsky-Rosen Experiments: The Structure of the Sample Space I, II. Foundations of Physics Letters 1: 205–232.

    Article  MathSciNet  Google Scholar 

  • Koza, J. (1992). Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press.

    MATH  Google Scholar 

  • Lee, J-S., Chung, Y., Kim, J. & Lee, S. (1999). A Practical Method of Constructing Quantum Combinational Logic Circuits. arXiv: quantph/9911053v1 (12 November).

    Google Scholar 

  • Lomont, Ch. (2003). Quantum Circuit Identities. arXiv: quant-ph/0307111 v1 (16 July).

    Google Scholar 

  • Lukac, M., Pivtoraiko, M., Mishchenko, A. & Perkowski, M. (2002). Automated Synthesis of Generalized Reversible Cascades Using Genetic Algorithms. In Proc. Fifth Intern. Workshop on Boolean Problems, 33–45 Freiberg, Sachsen, Germany, September 19–20.

    Google Scholar 

  • Lukac, M. & Perkowski, M. (2002). Evolving Quantum Circuits Using Genetic Algorithms. In Proc. of 5th NASA/DOD Workshop on Evolvable Hardware, 177–185.

    Google Scholar 

  • Lukac, M., Lee, S. & Perkowski, M. (2003). Low Cost NMR Realizations of Ternary and Mixed Quantum Gates and Circuits. In preparation.

    Google Scholar 

  • Lukac, M., Lee, S. & Perkowski, M. (2003). Inexpensive NMR Realizations of Quantum Gates. In preparation.

    Google Scholar 

  • Miller, D. M. (2002). Spectral and Two-Place Decomposition Techniques in Reversible Logic. Proc. Midwest Symposium on Circuits and Systems, on CD-ROM, August.

    Google Scholar 

  • Miller, D. M. & Dueck, G. W. (2003). Spectral Techniques for Reversible Logic Synthesis. Proc. RM: 56–62.

    Google Scholar 

  • Mishchenko, A. & Perkowski, M. (2002). Logic Synthesis of Reversible Wave Cascades. In Proc. IEEE/ACM International Workshop on Logic Synthesis, 197–202. June.

    Google Scholar 

  • Monroe, C., Leibfried, D., King, B. E., Meekhof, D. M., Itano, W. M. & Wineland, D. J. (1997). Simplified Quantum Logic with trapped Ions. Physical Review A (April) 55: Issue 4, 2489–2491.

    Article  Google Scholar 

  • Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. (1996). A “Schroedinger Cat” Superposition State of an Atom. Science (May) 272: 1131–1136.

    Article  MathSciNet  MATH  Google Scholar 

  • Nielsen, M. A. & Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press.

    MATH  Google Scholar 

  • Negotevic, G., Perkowski, M., Lukac, M. & Buller, A. (2002). Evolving Quantum Circuits and an FPGA Based Quantum Computing Emulator. In Proc. Fifth Intern. Workshop on Boolean Problems, 15–22. Freiberg, Sachsen, Germany, September 19–20.

    Google Scholar 

  • Peres, A. (1985). Reversible Logic and Quantum Computers. Physical Review A 32: 3266–3276.

    Article  MathSciNet  Google Scholar 

  • Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Song, X., Al-Rabadi, A., Jozwiak, L., Coppola, A. & Massey, B. (2001). Regular Realization of symmetric Functions Using Reversible Logic. In Proceedings of EUROMICRO Symposium on Digital Systems Design, 245–252.

    Chapter  Google Scholar 

  • Perkowski, M., Jozwiak, L., Kerntopf, P., Mishchenko, A., Al-Rabadi, A., Coppola, A., Buller, A., Song, X., Khan, M. M. H. A., Yanushkevich, S., Shmerko, V. & Chrzanowska-Jeske, M. (2001). A General Decomposition for Reversible Logic. Proceedings of RM: 119–138.

    Google Scholar 

  • Perkowski, M., Al-Rabadi, A. & Kerntopf, P. (2002). Multiple-Valued Quantum Logic Synthesis. Proc. of 2002 International Symposium on New Paradigm VLSI Computing, 41–47. Sendai, Japan, December 12–14.

    Google Scholar 

  • Price, M. D., Somaroo, S. S., Tseng, C. H., Core, J. C., Fahmy, A. H., Havel, T. F. & Cory, D. (1999). Construction and Implementation of NMR Quantum Logic Gates for Two Spin Systems. Journal of Magnetic Resonance 140: 371–378.

    Article  Google Scholar 

  • Price, M. D., Somaroo, S. S., Dunlop, A. E., Havel, T. F. & Cory, D. G. (1999). Generalized Methods for the Development of Quantum Logic Gates for an NMR Quantum Information Processor. Physical Review A (Octover) 60(4): 2777–2780.

    Article  Google Scholar 

  • Rubinstein, B. I. P. (2001). Evolving Quantum Circuits Using Genetic Programming. In Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001), 144–151.

    Google Scholar 

  • Shende, V. V., Prasad, A. K., Markov, I. K. & Hayes, J. P. (2002). Reversible Logic Circuit Synthesis. Proc. 11th IEEE/ACM Intern. Workshop on Logic Synthesis (IWLS), 125–130.

    Google Scholar 

  • Smolin, J. & DiVincenzo, D. P. (1996). Five Two-Qubit Gates are Sufficient to Implement the Quantum Fredkin Gate. Physical Review A (April) 53(4), 2855–2856.

    Article  MathSciNet  Google Scholar 

  • Spector, L., Barnum, H., Bernstein, H. J. & Swamy, N. (1999). Finding a Better-than-Classical Quantum AND/OR Algorithm Using Genetic Programming. In Proc. 1999 Congress on Evolutionary Computation, Vol. 3, 2239–2246. Washington DC, 6–9 July; IEEE, Piscataway, NJ.

    Google Scholar 

  • Van Der Sypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood, M. H. & Chuang, I. L. (2001). Experimental Realization of Shor’s Quantum Factoring Algorithm Using Nuclear Magnetic Resonance. Nature (20/27 December) 414: 883–887.

    Article  Google Scholar 

  • Vieri, C., Ammer, M. J., Frank, M., Margolus, N. & Knight, T. A Fully Reversible Asymptotically Zero Energy Microprocessor. MIT Artificial Intelligence Laboratory, Cambridge, MA 02139, USA

    Google Scholar 

  • von Neumann, J. (1950). Mathematical Foundations of Quantum Mechanics. Princeton University Press.

    Google Scholar 

  • Wheeler, J. A. & Zurek, W. H. (1983). Quantum Theory and Measurement. Princeton University Press.

    Google Scholar 

  • Williams, C. W. & Gray, A. G. (1999). Automated Design of Quantum Circuits. ETC Quantum Computing and Quantum Communication, QCQC ’98, 113–125. Palm Springs, California: Springer-Verlag, February 17–20.

    Google Scholar 

  • Williams, C. P. & Clearwater, S. H. (1998)., Explorations in Quantum Computing. New York Inc.: Springer-Verlag. www.ece.pdx.edurlukacm/q-bench.html

    Google Scholar 

  • Yabuki, T. & Iba, H. (2000). Genetic Algorithms and Quantum Circuit Design, Evolving a Simpler Teleportation Circuit. In Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, 421–425.

    Google Scholar 

  • Yang, G., Hung, W. N. N., Song, X. & Perkowski, M. (2003). Majority-Based Reversible Logic Gate. In Proceedings of 6th International Symposium on Representations and Methodology of Future Computing Technology, 191–200. Trier, Germany, March 10–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lukac, M. et al. (2004). Evolutionary Approach to Quantum and Reversible Circuits Synthesis. In: Artificial Intelligence in Logic Design. Artificial Intelligence in Logic Design, vol 766. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2075-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2075-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6583-4

  • Online ISBN: 978-1-4020-2075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics