Skip to main content

On the Homogeneous Model of Euclidean Geometry

  • Chapter
Guide to Geometric Algebra in Practice

Abstract

We attach the degenerate signature (n,0,1) to the dual Grassmann algebra of projective space to obtain a real Clifford algebra which provides a powerful, efficient model for Euclidean geometry. We avoid problems with the degenerate metric by constructing an algebra isomorphism between the Grassmann algebra and its dual that yields non-metric meet and join operators. We focus on the cases of n=2 and n=3 in detail, enumerating the geometric products between k-blades and m-blades. We identify sandwich operators in the algebra that provide all Euclidean isometries, both direct and indirect. We locate the spin group, a double cover of the direct Euclidean group, inside the even subalgebra of the Clifford algebra, and provide a simple algorithm for calculating the logarithm of group elements. We conclude with an elementary account of Euclidean kinematics and rigid body motion within this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use superscripts for W and subscripts for W since W will be the more important algebra for our purposes.

  2. 2.

    Note that the orientation of e 31 is reversed; this is traditional since Plücker introduced these line coordinates.

  3. 3.

    Editorial note: The reader may find the alternative coordinate-free construction in Sect. 18.3 enlightening.

  4. 4.

    Blurring the distinction between these two spaces may have led some authors to incorrect conclusions about the homogeneous model of Euclidean geometry, see [21, p. 11].

  5. 5.

    Orientation is an interesting topic which lies outside the scope of this article.

  6. 6.

    In fact, the validity of most of the above calculations requires that I 2=0.

  7. 7.

    The presence of a minus sign (or “the factor (−1)nk”) in some literature arises from the fact that the desired reflection is in the hyperplane orthogonal to the 1-vector appearing in the sandwich. Since 1-vectors represent hyperplanes here, in the dual algebra, no such correction factor is required.

  8. 8.

    A convention apparently introduced by Klein, see [18].

  9. 9.

    A polarity is an involutive projectivity that swaps points and planes.

  10. 10.

    Editorial note: This approach to dynamics may be compared to Chap. 1 and Chap. 18 elsewhere in this volume.

  11. 11.

    We restrict ourselves to the case of a finite set of mass points, since extending this treatment to a continuous mass distribution presents no significant technical problems; summations have to be replaced by integrals.

  12. 12.

    It remains to be seen if this approach represents an improvement over the linear algebra approach, which could also be maintained in this setting.

  13. 13.

    From corpus, Latin for body.

References

  1. Ablamowicz, R.: Structure of spin groups associated with degenerate Clifford algebras. J. Math. Phys. 27, 1–6 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Physics. Springer, New York (1978), Appendix 2

    Google Scholar 

  3. Ball, R.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900)

    Google Scholar 

  4. Blaschke, W.: Ebene Kinematik. Teubner, Leipzig (1938)

    Google Scholar 

  5. Blaschke, W.: Nicht-euklidische Geometrie und Mechanik. Teubner, Leipzig (1942)

    MATH  Google Scholar 

  6. Blaschke, W.: Analytische Geometrie. Birkhäuser, Basel (1954)

    MATH  Google Scholar 

  7. Bourbaki, N.: Elements of Mathematics, Algebra I. Springer, Berlin (1989)

    MATH  Google Scholar 

  8. Conradt, O.: Mathematical Physics in Space and Counterspace. Verlag am Goetheanum, Goetheanum (2008)

    MATH  Google Scholar 

  9. Coxeter, H.M.S.: Projective Geometry. Springer, New York (1987)

    MATH  Google Scholar 

  10. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kaufmann, San Francisco (2009)

    Google Scholar 

  11. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  12. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2007)

    Google Scholar 

  13. Gunn, C.: On the homogeneous model for Euclidean geometry: extended version. http://arxiv.org/abs/1101.4542 (2011)

  14. Hestenes, D.: New tools for computational geometry and rejuvenation of screw theory. In: Bayro-Corrochano, E.J., Scheuermann, G. (eds.) Geometric Algebra Computing: In Engineering and Computer Science, pp. 3–35. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Fundamental Theories of Physics. Reidel, Dordrecht (1987)

    Google Scholar 

  16. Hitchin, N.: Projective geometry. http://people.maths.ox.ac.uk/hitchin/hitchinnotes/Projective_geometry/Chapter_3_Exterior.pdf (2003)

  17. Jessop, C.M.: A Treatise on the Line Complex. Chelsea, New York (1969). Original 1903, Cambridge

    MATH  Google Scholar 

  18. Klein, F.: Über Liniengeometrie und metrische Geometrie. Math. Ann. 2, 106–126 (1872)

    Google Scholar 

  19. Klein, F.: Vorlesungen Über Höhere Geometrie. Chelsea, New York (1927)

    Google Scholar 

  20. Klein, F.: Vorlesungen Über Nicht-euklidische Geometrie. Chelsea, New York (1949). Original 1926, Berlin

    Google Scholar 

  21. Li, H.: Invariant Algebras and Geometric Algebra. World Scientific, Singapore (2008)

    Book  Google Scholar 

  22. McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)

    Google Scholar 

  23. Perwass, C.: Geometric Algebra with Applications to Engineering. Springer, Berlin (2009)

    Google Scholar 

  24. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Selig, J.: Clifford algebra of points, lines, and planes. Robotica 18, 545–556 (2000)

    Article  Google Scholar 

  26. Selig, J.: Geometric Fundamentals of Robotics. Springer, Berlin (2005)

    MATH  Google Scholar 

  27. Study, E.: Von den bewegungen und umlegungen. Math. Ann. 39, 441–566 (1891)

    Article  MathSciNet  Google Scholar 

  28. Study, E.: Geometrie der Dynamen. Teubner, Leipzig (1903)

    MATH  Google Scholar 

  29. von Mises, R.: Die Motorrechnung Eine Neue Hilfsmittel in der Mechanik. Z. Rein Angew. Math. Mech. 4(2), 155–181 (1924)

    Article  Google Scholar 

  30. Weiss, E.A.: Einführung in die Liniengeometrie und Kinematik. Teubner, Leipzig (1935)

    Google Scholar 

  31. Whitehead, A.N.: A Treatise on Universal Algebra. Cambridge University Press, Cambridge (1898)

    Google Scholar 

  32. Wikipedia. http://en.wikipedia.org/wiki/Exterior_algebra

  33. Ziegler, R.: Die Geschichte Der Geometrischen Mechanik im 19. Jahrhundert. Franz Steiner Verlag, Stuttgart (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gunn, C. (2011). On the Homogeneous Model of Euclidean Geometry. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice. Springer, London. https://doi.org/10.1007/978-0-85729-811-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-811-9_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-810-2

  • Online ISBN: 978-0-85729-811-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics