Skip to main content

Basic Science of Lung Cancer in Older Patients

  • Chapter
  • First Online:
Management of Lung Cancer in Older People

Abstract

Lung cancer is the leading cause of cancer-related mortality in both men and women, with about 1.61 million new diagnoses and 1.38 million deaths worldwide in 2008. Non-small cell lung cancer (NSCLC), including squamous carcinoma, adenocarcinoma, and undifferentiated large cell carcinoma, accounts for more than 80 % of new lung cancer diagnoses. Unfortunately, at the time of diagnosis, the majority of patients have advanced disease, for which a systemic, palliative treatment is the primary therapeutic option. Considering that 47 % of all lung cancers are diagnosed in patients older than 70 years (14 % in patients older than 80 years), advanced NSCLC in elderly patients is an increasingly common problem, which the practitioner of oncology must face. The relationship between aging and cancer is not clear; considerable controversy surrounds the mechanisms that lead to increased incidence of cancer in the aged. It is worthy to note that frequencies of specific cancers are age-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Owonikoko TK, Ragin CC, Belani CP, et al. Lung cancer in elderly patients: an analysis of the surveillance, epidemiology, and end results database. J Clin Oncol. 2007;25:5570–7.

    Article  PubMed  Google Scholar 

  3. Wingo PA, Cardinez CJ, Landis SH, et al. Long term trends in cancer mortality in the United States. Cancer. 2003;97:3133–275.

    Article  PubMed  Google Scholar 

  4. Gridelli C, Perrone F, Monfardini S, et al. Lung cancer in the elderly. Eur J Cancer. 1997;33(14):2313–4.

    Article  PubMed  CAS  Google Scholar 

  5. Havlik RJ, Yancik R, Long S, et al. The National Institute on Aging and the National Cancer Institute SEER collaborative study on comorbidity and early diagnosis of cancer in the elderly. Cancer. 1994;74(Suppl):2101–6.

    Article  PubMed  CAS  Google Scholar 

  6. Dix D, Cohen P. On the role of aging in carcinogenesis. Anticancer Res. 1999;19:723–6.

    PubMed  CAS  Google Scholar 

  7. Parkin DM, Bray FI, Devesa S. Cancer burden in the year 2000. The global picture. Eur J Cancer. 2001;37:S4–66.

    Article  PubMed  Google Scholar 

  8. Peto R, Roe FJC, Lee PN, Levy L, Clack J. Cancer and ageing in mice and men. Br J Cancer. 1975;32:411–26.

    Article  PubMed  CAS  Google Scholar 

  9. Peto R, Parish SE, Gray RG. There is no such thing as ageing, and cancer is not related to it. In: Likhachev A, Anisimov V, Montesano R, editors. Age-related factors in carcinogenesis, vol. 58. Lyon: IARC; 1985. p. 43–53.

    Google Scholar 

  10. Anisimov VN. Carcinogenesis and aging. Adv Cancer Res. 1983;40:265–324.

    Google Scholar 

  11. Anisimov VN. Carcinogenesis and aging, vol. 1, 2. Boca Raton: CRC Press; 1987.

    Google Scholar 

  12. Anisimov VN. Age-related mechanisms of susceptibility to carcinogenesis. Semin Oncol. 1989;16:10–9.

    PubMed  CAS  Google Scholar 

  13. Dilman VM. Development, aging, and disease. A new rationale for and intervention strategy. Chur: Harwood Acad Publ; 1994.

    Google Scholar 

  14. Simpson AJG. A natural somatic mutation frequency and human carcinogenesis. Adv Cancer Res. 1997;71:209–40.

    Article  PubMed  CAS  Google Scholar 

  15. Anisimov VN. Age as a factor of risk in multistage carcinogenesis. In: Balducci L, Lyman GH, Ershler WB, editors. Comprehensive geriatric oncology. Amsterdam: Harwood Academic Publishers; 1998. p. 157–78.

    Google Scholar 

  16. DePinho RA. The age of cancer. Nature. 2000;408:248–54.

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Pol JA, Douglas MG. Molecular interactions of cancer and age. Hematol Oncol Clin North Am. 2000;14:25–44.

    Article  PubMed  CAS  Google Scholar 

  18. Rubin H. Selected cell and selective microenvironment in neoplastic development. Cancer Res. 2001;61:799–807.

    PubMed  CAS  Google Scholar 

  19. Campisi J. Aging and cancer: the double-edged sword or replicative senescence. J Am Geriatr Soc. 1997;45:1–6.

    Google Scholar 

  20. Campisi J. Cancer, aging, and cellular senescence. In Vivo. 2000;14:183–8.

    PubMed  CAS  Google Scholar 

  21. Campisi J, Kirn S, Lim CS, Rubio M. Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol. 2001;36:1619–37.

    Article  PubMed  CAS  Google Scholar 

  22. Krtolica A, Parincllo S, Lockett S, Desprez P-Y, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA. 2001;98:12072–7.

    Article  PubMed  CAS  Google Scholar 

  23. Rinehart CA, Torti VR. Aging and cancer: the role of stromal interactions with epithelial cells. Mol Carcinog. 1997;18:187–92.

    Article  PubMed  CAS  Google Scholar 

  24. Dakubo GD, Jakupciak JP, Birch-Machin MA, Parr RL. Clinical implications and utility of field cancerization. Cancer Cell Int. 2007;7:2.

    Article  PubMed  Google Scholar 

  25. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    Article  PubMed  CAS  Google Scholar 

  26. Steiling K, Ryan J, Brody JS, Spira A. The field of tissue injury in the lung and airway. Cancer Prev Res (Phila). 2008;1(6):396–403.

    Article  CAS  Google Scholar 

  27. Wistuba II, Lam S, Behrens C, et al. Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst. 1997;89(18):1366–73.

    Article  PubMed  CAS  Google Scholar 

  28. Powell CA, Klares S, O’Connor G, Brody JS. Loss of heterozygosity in epithelial cells obtained by bronchial brushing: clinical utility in lung cancer. Clin Cancer Res. 1999;5(8):2025–34.

    PubMed  CAS  Google Scholar 

  29. Bhutani M, Pathak AK, Fan YH, et al. Oral epithelium as a surrogate tissue for assessing smoking-induced molecular alterations in the lungs. Cancer Prev Res (Phila). 2008;1(1):39–44.

    Article  Google Scholar 

  30. Sridhar S, Schembri F, Zeskind J, et al. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics. 2008;9:259.

    Article  PubMed  Google Scholar 

  31. Auerbach O, Hammond EC, Kirman D, Garfinkel L. Effects of cigarette smoking on dogs, II: pulmonary neoplasms. Arch Environ Health. 1970;21(6):754–68.

    PubMed  CAS  Google Scholar 

  32. Nelson MA, Wymer J, Clements Jr N. Detection of K-ras gene mutations in non-neoplastic lung tissue and lung cancers. Cancer Lett. 1996;103(1):115–21.

    Article  PubMed  CAS  Google Scholar 

  33. Tang X, Shigematsu H, Bekele BN, et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res. 2005;65(17):7568–72.

    PubMed  CAS  Google Scholar 

  34. Tang X, Varella-Garcia M, Xavier AC, et al. Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas. Cancer Prev Res (Phila). 2008;1(3):192–200.

    Article  CAS  Google Scholar 

  35. Hackett NR, Heguy A, Harvey BG, et al. Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol. 2003;29(3 Pt 1):331–43.

    Article  PubMed  CAS  Google Scholar 

  36. Spira A, Beane J, Shah V, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci USA. 2004;101(27):10143–8.

    Article  PubMed  CAS  Google Scholar 

  37. Spira A, Beane JE, Shah V, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med. 2007;13(3):361–6.

    Article  PubMed  CAS  Google Scholar 

  38. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  39. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.

    Article  PubMed  CAS  Google Scholar 

  40. Pitot HC. The molecular biology of carcinogenesis. Cancer. 1993;72:962–70.

    Article  PubMed  CAS  Google Scholar 

  41. Vijg J. Somatic mutations and aging: a re-evaluation. Mutat Res. 2000;447:117–35.

    Article  PubMed  CAS  Google Scholar 

  42. Luzatto L. The mechanisms of neoplastic transformation. Eur J Cancer. 2001;37:S114–7.

    Article  Google Scholar 

  43. Kinzler KW, Vogelstein B. Gatekeepers and caretakers. Nature. 1997;386:761–3.

    Article  PubMed  CAS  Google Scholar 

  44. Catania J, Fairweather DS. DNA methylation and cellular aging. Mutat Res. 1991;256:283–93.

    Article  PubMed  CAS  Google Scholar 

  45. Coller HA, Khrapko K, Bodyak ND, et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet. 2001;28:147–50.

    Article  PubMed  CAS  Google Scholar 

  46. Coller HA, Bodyak ND, Khrapko K. Frequent intracellular clonal expansions of somatic mtDNA mutations. Ann N Y Acad Sci. 2002;959:434–47.

    Article  PubMed  CAS  Google Scholar 

  47. Nekhaeva E, Bodyak ND, Kraytsberg Y, et al. Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci USA. 2002;99:5521–6.

    Article  PubMed  CAS  Google Scholar 

  48. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113(6):673–6.

    Article  PubMed  CAS  Google Scholar 

  49. Vanio H, Magee PN, McGregor D, McMichael AJ, editors. Mechanisms of carcinogenesis in risk identification. IARC science publication number 116. Lyon: IARC;1992. p. 9–56.

    Google Scholar 

  50. Moolgavkar S, Krewski D, Zeise L, et al., editors. Quantitative estimation and prediction of human cancer risk, IARC science publication number 131. Lyon: IARC; 1999.

    Google Scholar 

  51. Simons JW. Genetic, epigenetic, dysgenetic and non-genetic mechanisms in tumorigenesis. II. Further delineation of the rate limiting step. Anticancer Res. 1999;19:4781–9.

    PubMed  CAS  Google Scholar 

  52. Ponten J. Cell biology of precancer. Eur J Cancer. 2001;37:S97–113.

    Article  PubMed  CAS  Google Scholar 

  53. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  PubMed  CAS  Google Scholar 

  54. Schlessinger D, Van Zant G. Does functional depletion of stem cells drive aging. Mech Ageing Dev. 2001;122:1537–53.

    Article  PubMed  CAS  Google Scholar 

  55. Aboseif S, El-Sakka A, Young P, Cunha G. Mesenchymal reprogramming of adult human epithelial differentiation. Differentiation. 1999;65:113–8.

    Article  PubMed  CAS  Google Scholar 

  56. Liotta LA, Kohn EC. The microenvironment of the tumor-host interface. Nature. 2001;411:375–9.

    Article  PubMed  CAS  Google Scholar 

  57. Anisimov VN, Zhukovskaya NV, Loktionov AS, et al. Influence of host age on lung colony forming capacity of injected rat rhabdomyosarcoma cells. Cancer Lett. 1988;40:77–82.

    Article  PubMed  CAS  Google Scholar 

  58. Anisimov VN, Zhukovskaya NV, Loktionov AS, et al. Host and donor age dependency of colony forming capacity of lung-affine rat rhabdomyosarcoma RA-2 cells. In: Abstract of the international conference on tumor micro environment: progression, therapy and prevention. Israel: Tiberias; 1995. p. 6.

    Google Scholar 

  59. Harman D. Free-radical theory of aging: increasing the functional life span. Ann N Y Acad Sci. 1994;717:257–66.

    Article  Google Scholar 

  60. Harman DH. Extending functional life span. Exp Gerontol. 1998;33:95–112.

    Article  PubMed  CAS  Google Scholar 

  61. Hamilton ML, Van Remmen H, Drake JA, et al. Does oxidative damage to DNA increase with age. Proc Natl Acad Sci USA. 2001;98:10469–74.

    Article  PubMed  CAS  Google Scholar 

  62. Skulachev VP. The programmed death phenomena, aging, and the Samurai law of biology. Exp Gerontol. 2001;36:995–1024.

    Article  PubMed  CAS  Google Scholar 

  63. Kawanishi S, Hiraki Y, Oikawa S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res. 2001;488:65–76.

    Article  PubMed  CAS  Google Scholar 

  64. Salvioli S, Bonafe M, Capri M, Monti D, Fransceschi C. Mitochondria, aging and longevity–a new perspective. FEBS Lett. 2001;492:9–13.

    Article  PubMed  CAS  Google Scholar 

  65. von Zglinicki T, Burkle A, Kirkwood TBL. Stress, DNA damage and aging-an integrative approach. Exp Gerontol. 2001;36:1049–62.

    Article  Google Scholar 

  66. Yu BP, editor. Free radicals in aging. Boca Raton: CRC Press; 1993.

    Google Scholar 

  67. Shigenaga MK, Hagen TV, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA. 1994;91:10771–8.

    Article  PubMed  CAS  Google Scholar 

  68. Barja G. Endogenous oxidative stress: relation to aging, longevity and caloric restriction. Ageing Res Rev. 2002;1:397–411.

    Article  PubMed  CAS  Google Scholar 

  69. Du MQ, Carmichael PL, Phillips DH. Induction of activated mutations in the human c-Ha-ras proto-oncogene by oxygen free radicals. Mol Carcinog. 1994;11:170–5.

    Article  PubMed  CAS  Google Scholar 

  70. Ames BN, Shigenaga MB, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90:7915–22.

    Article  PubMed  CAS  Google Scholar 

  71. Reiter RJ. Reactive oxygen species, DNA damage, and carcinogenesis: intervention with melatonin. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D, editors. The pineal gland and cancer neuroimmunoendocrine mechanisms in malignancy. Berlin: Springer; 2001. p. 442–55.

    Chapter  Google Scholar 

  72. Saretzki G, Sitte N, Merkel U, Wurm RE. Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of Grich single stranded DNA fragments. Oncogene. 1999;18:5148–58.

    Article  PubMed  CAS  Google Scholar 

  73. von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med. 2000;28:64–74.

    Article  Google Scholar 

  74. Proctor CJ, Kikwood TBL. Modelling telomere shortening and the role of oxidative stress. Mech Ageing Dev. 2002;123:351–6.

    Article  PubMed  CAS  Google Scholar 

  75. Colotta F, Allavena P, Sica A, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.

    Article  PubMed  CAS  Google Scholar 

  76. Brody JS, Spira A. State of the art: chronic obstructive pulmonary disease, inflammation, and lung cancer. Proc Am Thorac Soc. 2006;3(6):535–7.

    Article  PubMed  CAS  Google Scholar 

  77. Smith CJ, Perfetti TA, King JA. Perspectives on pulmonary inflammation and lung cancer risk in cigarette smokers. Inhal Toxicol. 2006;18(9):667–77.

    Article  PubMed  CAS  Google Scholar 

  78. Baratelli F, Lin Y, Zhu L, et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4þT cells. J Immunol. 2005;175(3):1483–90.

    PubMed  CAS  Google Scholar 

  79. Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3- dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fortunato Ciardiello MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Fasano, M., Cantile, F., Morgillo, F., Ciardiello, F. (2013). Basic Science of Lung Cancer in Older Patients. In: Gridelli, C., Audisio, R. (eds) Management of Lung Cancer in Older People. Springer, London. https://doi.org/10.1007/978-0-85729-793-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-793-8_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-792-1

  • Online ISBN: 978-0-85729-793-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics