Skip to main content

Magma Transport

  • Chapter
Mathematical Geoscience

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 36))

  • 3214 Accesses

Abstract

ChapterĀ 9 begins with an extended but condensed discussion of igneous petrology, involving detailed discussion of phase diagrams and the difference between the various basaltic lavas which occur. The remainder of the chapter considers in sequence the path of magma from its genesis deep in the mantle to its eruption at the surface. First the creeping transport in the asthenosphere is described, then magmafracturing in the lithosphere, then crystallisation in magma chambers, and finally volcanic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Dave Stevensonā€™s phrase, the tail wags the dog.

  2. 2.

    More precisely, take A=sāˆ’Ī·, B=s+Ī·, and then let Ī·ā†’0 with Ī·ā‰«d.

  3. 3.

    It is tempting to suppose that the large hexagonal basalt columns seen, for example, at the Giantā€™s Causeway in Northern Ireland might represent a similar phenomenon, but this appears not to be the case; such columnar basalts are thought to arise through an instability associated with contraction-induced fracturing.

  4. 4.

    The former spelling was Rhum; apparently the ā€˜hā€™ was added in the 1900s by the owner George Bullough, who disliked the alcoholic connotation. ā€˜Rumā€™ is an anglicisation of the Scots Gaelic ā€˜RĆ¹mā€™, of uncertain meaning.

  5. 5.

    This may not quite be true (at least in the way we will describe) for vulcanian eruptions, which are short term explosive events, and may be due to the build-up of (volatile) pressure in a vent which has been capped by a plug of solidified magma.

  6. 6.

    After G.I. Taylor.

  7. 7.

    DePaolo and Manga (2003) summarise the hypothesis, and on the same page Foulger and Natland (2003) raise various objections. The root of the controversy is (as so often) a misunderstanding of how models should be applied. The objections of Foulger and Natland are that (i) there is no tomographic evidence for plume tails; (ii) hot spots are not fixed; (iii) there is no evidence for excessive temperatures at hot spots. These objections are based on a naĆÆve understanding of how convection works. One should not expect to see plume tails tomographically, nor should hot spots be necessarily fixed, nor should there be large temperature excess in strongly variable viscosity convection. The objections are not based on data, but on preconception. The debate has become somewhat creationist in tone, with its own website (www.mantleplumes.org), and occasional inflammatory pieces, such as that of McNutt (2006), with the bye-line: ā€œAt least one chain of hot-spot volcanoes is not caused by a plume rising up from the core-mantle boundary, calling for a reexamination of the plume hypothesis.ā€ McNuttā€™s remarks were chastised by Hofmann and Hart (2007). Just as the question for global warming sceptics is: how could CO2 not cause increased temperatures? the question to be asked here is really: how could there not be plumes if the mantle is convecting at high Rayleigh number?

  8. 8.

    The equation is closely related to that studied by Benjamin et al. (1972) as a model for long waves in shallow water. We may infer that the present equation for h is well-posed.

References

  • Aharonov E, Whitehead JA, Kelemen PB, Spiegelman M (1995) Channeling instability of upwelling melt in the mantle. JĀ Geophys Res 100:20433ā€“20450

    ArticleĀ  Google ScholarĀ 

  • Ahern JL, Turcotte DL (1979) Magma migration beneath an ocean ridge. Earth Planet Sci Lett 45:115ā€“122

    ArticleĀ  Google ScholarĀ 

  • AlbarĆØde F (2003) Geochemistry: an introduction. Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095ā€“1108

    ArticleĀ  Google ScholarĀ 

  • Avrami M (1939) Kinetics of phase change. I. General theory. JĀ Chem Phys 7:1103ā€“1112

    Google ScholarĀ 

  • Avrami M (1940) Kinetics of phase change. II. Transformationā€“time relations for random distribution of nuclei. JĀ Chem Phys 8:212ā€“224

    Google ScholarĀ 

  • Benjamin TB, Bona JL, Mahony JJ (1972) Model equations for long waves in nonlinear dispersive systems. Philos Trans R Soc Lond A 272:47ā€“78

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  • Bercovici D (ed) (2009a) Mantle dynamics. Treatise on geophysics, volĀ 7. Elsevier, Amsterdam

    Google ScholarĀ 

  • Bercovici D (2009b) Mantle dynamics past, present and future: an introduction and overview. In: Bercovici D (ed) Mantle dynamics. Treatise on geophysics, volĀ 7. Elsevier, Amsterdam, pp 1ā€“30

    ChapterĀ  Google ScholarĀ 

  • Bercovici D, Michaut C (2010) Two-phase dynamics of volcanic eruptions: compaction, compression and the conditions for choking. Geophys J Int 182:843ā€“864

    ArticleĀ  Google ScholarĀ 

  • Bergles AE, Collier JG, Delhaye JM, Hewitt GF, Mayinger F (1981) Two-phase flow and heat transfer in the power and process industries. Hemisphere, McGraw-Hill, New York

    Google ScholarĀ 

  • Bittner D, Schmeling H (1995) Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys J Int 123:59ā€“70

    ArticleĀ  Google ScholarĀ 

  • Bolchover P, Lister JR (1999) The effect of solidification on fluid-driven fracture, with application to bladed dykes. Proc R Soc Lond A 455:2389ā€“2409

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Bowen NL (1956) The evolution of the igneous rocks. Dover, New York

    Google ScholarĀ 

  • Brandeis G, Jaupart C (1986) On the interaction between convection and crystallisation in cooling magma chambers. Earth Planet Sci Lett 77:345ā€“361

    ArticleĀ  Google ScholarĀ 

  • Brandeis G, Jaupart C, AllĆØgre CJ (1984) Nucleation, crystal growth and the thermal regime of cooling magmas. JĀ Geophys Res 89:10161ā€“10177

    ArticleĀ  Google ScholarĀ 

  • Brandt A, Fernando HJS (eds) (1995) Double-diffusive convection. AGU, Washington

    Google ScholarĀ 

  • Brown GM (1956) The layered ultrabasic rocks of Rhum, Inner Hebrides. Philos Trans R Soc A 240:1ā€“53

    ArticleĀ  Google ScholarĀ 

  • Butterworth D, Hewitt GF (1977) Two-phase flow and heat transfer. Oxford University Press, Oxford

    Google ScholarĀ 

  • Carrier GF, Krook M, Pearson CE (1966) Functions of a complex variable. McGraw-Hill, New York

    MATHĀ  Google ScholarĀ 

  • Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339ā€“360

    ArticleĀ  Google ScholarĀ 

  • Collier JG, Thome JR (1996) Convective boiling and condensation, 3rd edn. Clarendon, Oxford

    Google ScholarĀ 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinction (transl JĀ McClinton). Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Davis SH, Huppert HE, MĆ¼ller U, Worster MG (eds) (1992) Interactive dynamics of convection and solidification. Kluwer, Dordrecht

    Google ScholarĀ 

  • DePaolo DJ, Manga M (2003) Deep origin of hotspotsā€”the mantle plume model. Science 300:920ā€“921

    ArticleĀ  Google ScholarĀ 

  • Dobran F (2001) Volcanic processes: mechanisms in material transport. Kluwer, New York

    Google ScholarĀ 

  • Dowty E (1980) Crystal growth and nucleation theory and the numerical simulation of igneous crystallisation. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 419ā€“485

    Google ScholarĀ 

  • Drew DA, Passman SL (1999) Theory of multicomponent fluids. Springer, New York

    Google ScholarĀ 

  • Ehrhard P, Riley DS, Steen PH (eds) (2001) Interactive dynamics of convection and solidification. Kluwer, Dordrecht

    Google ScholarĀ 

  • Emeleus CH (1987) The Rhum layered complex, Inner Hebrides, Scotland. In: Parsons I (ed) Origins of igneous layering. NATO ASI series C, volĀ 196. Reidel, Dordrecht, pp 263ā€“286

    Google ScholarĀ 

  • England AH (1971) Complex variable methods in elasticity. Wiley-Interscience, London

    MATHĀ  Google ScholarĀ 

  • Flemings MC (1974) Solidification processing. McGraw-Hill, New York

    Google ScholarĀ 

  • Foulger GR, Natland JH (2003) Is ā€œhotspotā€ volcanism a consequence of plate tectonics? Science 300:921ā€“922

    ArticleĀ  Google ScholarĀ 

  • Fowler AC (1985b) A mathematical model of magma transport in the asthenosphere. Geophys Astrophys Fluid Dyn 33:63ā€“96

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Fowler AC (1990) A compaction model for melt transport in the Earthā€™s asthenosphere. Part II: applications. In: Ryan MP (ed) Magma transport and storage. Wiley, Chichester, pp 15ā€“32

    Google ScholarĀ 

  • Fowler AC, Scott DR (1996) Hydraulic crack propagation in a porous medium. Geophys J Int 127:595ā€“604

    ArticleĀ  Google ScholarĀ 

  • Francis P, Oppenheimer C (2004) Volcanoes, 2nd edn. Oxford University Press, Oxford

    Google ScholarĀ 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    BookĀ  MATHĀ  Google ScholarĀ 

  • Gakhov FD (1990) Boundary value problems. Dover, New York

    MATHĀ  Google ScholarĀ 

  • Grout FF (1945) Scale models of structures related to batholiths. Am J Sci 243-A:260ā€“284. (Daly volume)

    Google ScholarĀ 

  • Hargraves RB (ed) (1980) Physics of magmatic processes. Princeton University Press, Princeton

    Google ScholarĀ 

  • Hess PC (1989) Origins of igneous rocks. Harvard University Press, Cambridge

    Google ScholarĀ 

  • Hewitt GF, Hall-Taylor NS (1970) Annular two-phase flow. Pergamon, Oxford

    Google ScholarĀ 

  • Hewitt IJ, Fowler AC (2009) Melt channelization in ascending mantle. JĀ Geophys Res 114:B06210. doi:10.1029/2008JB006185

    ArticleĀ  Google ScholarĀ 

  • Hofmann AW, Hart SR (2007) Another nail in which coffin? Science 315:39ā€“40

    ArticleĀ  Google ScholarĀ 

  • Holmes A (1978) Principles of physical geology, 3rd edn, revised by Doris Holmes. Wiley, New York

    Google ScholarĀ 

  • Hort M, Spohn T (1991) Numerical simulation of the crystallization of multicomponents in thin dikes or sills. 2. Effects of heterocatalytic nucleation and composition. JĀ Geophys Res 96:485ā€“499

    ArticleĀ  Google ScholarĀ 

  • Huppert HE (1986) The intrusion of fluid mechanics into geology. JĀ Fluid Mech 173:557ā€“594

    ArticleĀ  Google ScholarĀ 

  • Huppert HE (1990) The fluid mechanics of solidification. JĀ Fluid Mech 212:209ā€“240

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Huppert HE (2000) Geological fluid mechanics. In: Batchelor GK, Moffatt HK, Worster MG (eds) Perspectives in fluid dynamics. Cambridge University Press, Cambridge, pp 447ā€“506

    Google ScholarĀ 

  • Huppert HE, Sparks RSJ (1980) The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense, ultrabasic magma. Contrib Mineral Petrol 75:279ā€“289

    ArticleĀ  Google ScholarĀ 

  • Huppert HE, Sparks RSJ (1988) The fluid dynamics of crustal melting by injection of basaltic sills. Trans R Soc Edinb 79:237ā€“243

    Google ScholarĀ 

  • Irvine TN (1987) Layering and related structures in the Duke Island and Skaergaard intrusions: similarities, differences, and origins. In: Parsons I (ed) Origins of igneous layering. NATO ASI series C, volĀ 196. Reidel, Dordrecht, pp 185ā€“245

    Google ScholarĀ 

  • Keller JB, Rubinow SI (1981) Recurrent precipitation and Liesegang rings. JĀ Chem Phys 74:5000ā€“5007

    MathSciNetĀ  Google ScholarĀ 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry. McGraw-Hill, New York

    Google ScholarĀ 

  • Kurz W, Fisher DJ (1998) Fundamentals of solidification, 4th edn. Trans Tech, Zurich

    Google ScholarĀ 

  • Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. JĀ Geophys Res 96:10049ā€“10077

    ArticleĀ  Google ScholarĀ 

  • Loper DE (ed) (1987) Structure and dynamics of partially solidified systems. Martinus Nijhoff, Dordrecht

    Google ScholarĀ 

  • MaalĆøe S (1978) The origin of rhythmic layering. Mineral Mag 42:337ā€“345

    ArticleĀ  Google ScholarĀ 

  • Marsh BD (1982) On the mechanics of igneous diapirism, stoping, and zone melting. Am J Sci 282:808ā€“855

    ArticleĀ  Google ScholarĀ 

  • Mason B, Moore CB (1982) Principles of geochemistry, 4th edn. Wiley, Chichester

    Google ScholarĀ 

  • McBirney AR (1984) Igneous petrology. Freeman Cooper and Co, San Francisco

    Google ScholarĀ 

  • McBirney AR, Noyes RM (1979) Crystallisation and layering of the Skaergaard intrusion. JĀ Pet 20:487ā€“554

    Google ScholarĀ 

  • McKenzie DP (1984) The generation and compaction of partially molten rock. JĀ Pet 25:713ā€“765

    MathSciNetĀ  Google ScholarĀ 

  • McNutt MK (2006) Another nail in the plume coffin? Science 313:1394

    ArticleĀ  Google ScholarĀ 

  • Melnik O (2000) Dynamics of two-phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull Volcanol 62:153ā€“170

    ArticleĀ  Google ScholarĀ 

  • Morgan JP, Blackman DK, Sinton JM (eds) (1992) Mantle flow and melt generation at mid-ocean ridges. Geophysical monograph, volĀ 71. AGU, Washington

    Google ScholarĀ 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42ā€“43

    ArticleĀ  Google ScholarĀ 

  • Morris S (1982) The effects of strongly temperature-dependent viscosity on slow flow past a hot sphere. JĀ Fluid Mech 124:1ā€“26

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Muskhelishvili NI (1953) Singular integral equations (Translation edited by JRM Radok). Noordhoff, Groningen

    MATHĀ  Google ScholarĀ 

  • Ng FSL (1998) Mathematical modelling of subglacial drainage and erosion. DPhil thesis, Oxford University

    Google ScholarĀ 

  • Nicolas A (1986) A melt extraction model based on structural studies in mantle peridotites. JĀ Pet 27:999ā€“1022

    Google ScholarĀ 

  • Noble B (1988) Methods based on the Wienerā€“Hopf technique, 2nd (unaltered) edn. Chelsea, New York

    MATHĀ  Google ScholarĀ 

  • Nockolds SR, Oā€™BĀ Knox RW, Chinner GA (1978) Petrology for students. Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Nye JF (1967) Theory of regelation. Philos Mag Ser 8 16(144):1249ā€“1266

    Google ScholarĀ 

  • Parsons I (ed) (1987) Origins of igneous layering. NATO ASI series C, volĀ 196. Reidel, Dordrecht

    Google ScholarĀ 

  • Petford N, Lister JR, Kerr RC (1994) The ascent of felsic magmas in dykes. Lithos 32:161ā€“168

    ArticleĀ  Google ScholarĀ 

  • Pitcher WS (1997) The nature and origin of granite, 2nd edn. Chapman and Hall, London

    Google ScholarĀ 

  • Richardson CN, Lister JR, McKenzie D (1996) Melt conduits in a viscous porous matrix. JĀ Geophys Res 101:20423ā€“20432

    ArticleĀ  Google ScholarĀ 

  • Ryan MP (ed) (1990) Magma transport and storage. Wiley, Chichester

    Google ScholarĀ 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, Cambridge

    BookĀ  Google ScholarĀ 

  • Schulte P et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214ā€“1218

    ArticleĀ  Google ScholarĀ 

  • Scott DR, Stevenson DJ (1984) Magma solitons. Geophys Res Lett 11:1161ā€“1164

    ArticleĀ  Google ScholarĀ 

  • Scott DR, Stevenson DJ, Whitehead JA (1986) Observations of solitary waves in a viscously deformable pipe. Nature 319:759ā€“761

    ArticleĀ  Google ScholarĀ 

  • Sigurdsson H (ed) (2000) Encyclopedia of volcanoes. Academic Press, San Diego

    Google ScholarĀ 

  • Sih GC (ed) (1973) Methods of analysis and solutions of crack problems. Noordhoff, Leyden

    MATHĀ  Google ScholarĀ 

  • Sneddon IN, Lowengrub M (1969) Crack problems in the classical theory of elasticity. Wiley, New York

    MATHĀ  Google ScholarĀ 

  • Sparks RSJ, Huppert HE, Koyaguchi T, Hallworth MA (1993) Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber. Nature 361:246ā€“249

    ArticleĀ  Google ScholarĀ 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester

    Google ScholarĀ 

  • Spence DA, Turcotte DL (1985) Magma driven propagation of cracks. JĀ Geophys Res 90:575ā€“580

    ArticleĀ  Google ScholarĀ 

  • Spence DA, Sharp PW, Turcotte DL (1987) Buoyancy-driven crack propagation: a mechanism for magma migration. JĀ Fluid Mech 174:135ā€“153

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Spiegelman M, Kelemen PB, Aharonov E (2001) Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. JĀ Geophys Res 106:2061ā€“2078

    ArticleĀ  Google ScholarĀ 

  • Spohn T, Hort M, Fischer H (1988) Numerical simulation of the crystallization of multicomponent melts in thin dikes or sills. 1. The liquidus phase. JĀ Geophys Res 93:4880ā€“4894

    ArticleĀ  Google ScholarĀ 

  • Starostin AB, Barmin AA, Melnik OE (2005) A transient model for explosive and phreatomagmatic eruptions. JĀ Volcanol Geotherm Res 143:133ā€“151

    ArticleĀ  Google ScholarĀ 

  • Stern ME (1960) The ā€˜salt fountainā€™ and thermohaline convection. Tellus 12:172ā€“175

    ArticleĀ  Google ScholarĀ 

  • Stevenson DJ (1989) Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys Res Lett 16:1067ā€“1070

    ArticleĀ  Google ScholarĀ 

  • Turcotte DL, Ahern JL (1978) A porous flow model for magma migration in the asthenosphere. JĀ Geophys Res 83:767ā€“772

    ArticleĀ  Google ScholarĀ 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge

    MATHĀ  Google ScholarĀ 

  • Turner JS (1974) Double-diffusive phenomena. Annu Rev Fluid Mech 6:37ā€“54

    ArticleĀ  Google ScholarĀ 

  • Wager LR, Brown GM (1968) Layered igneous rocks. Oliver and Boyd, Edinburgh

    Google ScholarĀ 

  • Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google ScholarĀ 

  • Wang Y, Merino E (1993) Oscillatory magma crystallisation by feedback between the concentrations of the reactant species and mineral growth rates. JĀ Pet 34:369ā€“382

    Google ScholarĀ 

  • Weertman J (1971) Velocity at which liquid-filled cracks move in the Earthā€™s crust or in glaciers. JĀ Geophys Res 76:8544ā€“8553

    ArticleĀ  Google ScholarĀ 

  • Weinberg RF, Podladchikov YY (1994) Diapiric ascent of magmas through power-law crust and mantle. JĀ Geophys Res 99:9543ā€“9559

    ArticleĀ  Google ScholarĀ 

  • Whalley PB (1987) Boiling, condensation, and gas-liquid flow. Clarendon, Oxford

    Google ScholarĀ 

  • Worster MG (1997) Convection in mushy layers. Annu Rev Fluid Mech 29:91ā€“122

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Worster MG (2000) Solidification of fluids. In: Batchelor GK, Moffatt HK, Worster MG (eds) Perspectives in fluid dynamics. Cambridge University Press, Cambridge, pp 393ā€“446

    Google ScholarĀ 

  • Worster MG, Huppert HE, Sparks RSJ (1990) Convection and crystallization in magma cooled from above. Earth Planet Sci Lett 101:78ā€“89

    ArticleĀ  Google ScholarĀ 

  • Yang X-S (2008) Mathematical modelling for earth scientists. Dunedin Academic Press, Edinburgh

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Fowler .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fowler, A. (2011). Magma Transport. In: Mathematical Geoscience. Interdisciplinary Applied Mathematics, vol 36. Springer, London. https://doi.org/10.1007/978-0-85729-721-1_9

Download citation

Publish with us

Policies and ethics