Skip to main content

Mitochondria, Sodium, and Calcium in Neuronal Dysfunction

  • Chapter
  • First Online:
Mitochondrial Dysfunction in Neurodegenerative Disorders

Abstract

Neuronal mitochondria in situ respond to changes in their cytoplasmic ionic environment. When calcium rises above 500 nM, the organelles accumulate the cation. This is an energy-requiring process and calcium overload can lead to the mitochondrial permeability transition and cell necrosis. Increases in cytoplasmic sodium indirectly affect mitochondrial bioenergetics by activating the plasma membrane sodium-potassium ATPase, increasing ATP demand and affecting mitochondrial Ca2+ cycling. Each factor comes into play during glutamate excitotoxicity, which is caused by pathological NMDA receptor activation; excitotoxicity is firmly implicated in neuronal damage after stroke and is implicated in a wide range of neurodegenerative disorders. The danger of oxidative stress may lie primarily in decreasing the capacity of mitochondria to respond to these ATP demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang DT, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol. 2006;80:241–68.

    Article  PubMed  CAS  Google Scholar 

  2. Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta. 2010;1802:135–42.

    Article  PubMed  CAS  Google Scholar 

  3. Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84:153–66.

    Article  PubMed  CAS  Google Scholar 

  4. Thayer SA, Miller RJ. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. J Physiol (Lond). 1990;425:85–115.

    CAS  Google Scholar 

  5. Demaurex N, Poburko D, Frieden M. Regulation of plasma membrane calcium fluxes by mitochondria. Biochim Biophys Acta. 2009;1787:1383–94.

    Article  PubMed  CAS  Google Scholar 

  6. Zoccarato F, Nicholls DG. The role of phosphate in the regulation of the Ca efflux pathway of liver mitochondria. Eur J Biochem. 1982;127:333–8.

    Article  PubMed  CAS  Google Scholar 

  7. Crompton M, Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem. 1978;91:599–608.

    Article  PubMed  CAS  Google Scholar 

  8. Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem. 2003;279:19062–70.

    Article  Google Scholar 

  9. Werth JL, Thayer SA. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci. 1994;14:346–56.

    Google Scholar 

  10. Frieden M, Arnaudeau S, Castelbou C, Demaurex N. Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+ ATPases. J Biol Chem. 2005;280:43198–208.

    Article  PubMed  CAS  Google Scholar 

  11. David G, Barrett EF. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol (Lond). 2003;548:425–38.

    Article  CAS  Google Scholar 

  12. Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta. 2009;1787:1309–16.

    Article  PubMed  CAS  Google Scholar 

  13. Nicholls DG, Scott ID. The regulation of brain mitochondrial calcium-ion transport: the role of ATP in the discrimination between kinetic and membrane-potential-dependent Ca efflux mechanisms. Biochem J. 1980;186:833–9.

    PubMed  CAS  Google Scholar 

  14. Wang GJ, Thayer SA. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol. 1996;76:1611–21.

    PubMed  CAS  Google Scholar 

  15. White RJ, Reynolds IJ. Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci. 1995;15:1318–28.

    PubMed  CAS  Google Scholar 

  16. Duchen MR. Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J. 1992;283:41–50.

    PubMed  CAS  Google Scholar 

  17. Pivovarova NB, Hongpaisan J, Andrews SB, Friel DD. Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J Neurosci. 1999;19:6372–84.

    PubMed  CAS  Google Scholar 

  18. Kristian T, Pivovarova NB, Fiskum G, Andrews SB. Calcium-induced precipitate formation in brain mitochondria: composition, calcium capacity, and retention. J Neurochem. 2007;102:1346–56.

    Article  PubMed  CAS  Google Scholar 

  19. Rizzuto R, Marchi S, Bonora M, et al. Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta. 2009;1787:1342–51.

    Article  PubMed  CAS  Google Scholar 

  20. Attwell D, Laughlin SB. An energy budget for signalling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133–45.

    Article  PubMed  CAS  Google Scholar 

  21. Nicholls DG, Attwell DA. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990;11:462–8.

    Article  PubMed  Google Scholar 

  22. Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58:293–7.

    Article  PubMed  CAS  Google Scholar 

  23. Budd SL, Nicholls DG. Mitochondrial calcium regulation and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem. 1996;67:2282–91.

    Article  PubMed  CAS  Google Scholar 

  24. Keelan J, Vergun O, Duchen MR. Excitotoxic mitochondrial depolarization requires both calcium and nitric oxide in rat hippocampal neurons. J Physiol (Lond). 1999;520:797–813.

    Article  CAS  Google Scholar 

  25. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci. 1998;1:366–73.

    Article  PubMed  CAS  Google Scholar 

  26. Kiedrowski L, Costa E. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Mol Pharmacol. 1995;47:140–7.

    PubMed  CAS  Google Scholar 

  27. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307:462–5.

    Article  PubMed  CAS  Google Scholar 

  28. Lerma J, Zukin RS, Bennett MV. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc Natl Acad Sci USA. 1990;87:2354–8.

    Article  PubMed  CAS  Google Scholar 

  29. Jekabsons MB, Nicholls DG. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem. 2004;279:32989–3000.

    Article  PubMed  CAS  Google Scholar 

  30. Yadava N, Nicholls DG. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity following partial respiratory inhibition of mitochondrial complex I with rotenone. J Neurosci. 2007;27:7310–7.

    Article  PubMed  CAS  Google Scholar 

  31. Snelling RM, Nicholls DG. Calcium efflux and cycling across the synaptosomal plasma membrane. Biochem J. 1985;226:225–31.

    PubMed  CAS  Google Scholar 

  32. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993;364:535–7.

    Article  PubMed  CAS  Google Scholar 

  33. Vesce S, Kirk L, Nicholls DG. Relationships between superoxide levels and delayed calcium deregulation in cultured cerebellar granule cells exposed continuously to glutamate. J Neurochem. 2004;90:683–93.

    Article  PubMed  CAS  Google Scholar 

  34. Vergun O, Sobolevsky AI, Yelshansky MV, Keelan J, Khodorov BI, Duchen MR. Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurones in culture. J Physiol (Lond). 2001;531:147–63.

    Article  CAS  Google Scholar 

  35. Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci. 1992;12:1882–95.

    PubMed  CAS  Google Scholar 

  36. Mackensen GB, Patel M, Sheng H, et al. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant 9. J Neurosci. 2001;21:4582–92.

    PubMed  CAS  Google Scholar 

  37. Ward MW, Rego AC, Frenguelli BG, Nicholls DG. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci. 2000;20:7208–19.

    PubMed  CAS  Google Scholar 

  38. Vergun O, Keelan J, Khodorov BI, Duchen MR. Glutamate-induced mitochondrial depolarization and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J Physiol (Lond). 1999;519:451–66.

    Article  CAS  Google Scholar 

  39. Rintoul GL, Reynolds IJ. Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta. 2010;1802:143–50.

    Article  PubMed  CAS  Google Scholar 

  40. Brustovetsky T, Li V, Brustovetsky N. Stimulation of glutamate receptors in cultured hippocampal neurons causes Ca2+-dependent mitochondrial contraction. Cell Calcium. 2009;46:18–29.

    Article  PubMed  CAS  Google Scholar 

  41. Greenwood SM, Connolly CN. Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology. 2007;53:891–8.

    Article  PubMed  CAS  Google Scholar 

  42. Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34:325–37.

    Article  PubMed  CAS  Google Scholar 

  43. Hardingham GE, Bading H. The yin and yang of NMDA receptor signalling. Trends Neurosci. 2003;26:81–9.

    Article  PubMed  CAS  Google Scholar 

  44. Leveille F, El GF, Gouix E, et al. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J. 2008;22:4258–71.

    Article  PubMed  CAS  Google Scholar 

  45. Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci USA. 2009;106:9854–9.

    Article  PubMed  CAS  Google Scholar 

  46. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta. 2010;1802:80–91.

    Article  PubMed  CAS  Google Scholar 

  47. Li V, Brustovetsky T, Brustovetsky N. Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death. Exp Neurol. 2009;218:171–82.

    Article  PubMed  CAS  Google Scholar 

  48. Astrup J, Sorensen PM, Sorensen HR. Oxygen and glucose consumption related to Na+ −K+ transport in canine brain. Stroke. 1981;12:726–30.

    Article  PubMed  CAS  Google Scholar 

  49. Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG. ‘Mild uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem. 2007;101:1619–31.

    Article  PubMed  CAS  Google Scholar 

  50. Mattiasson G, Shamloo M, Gido G, et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med. 2003;9:1062–8.

    Article  PubMed  CAS  Google Scholar 

  51. Abramov AY, Duchen MR. Impaired mitochondrial bioenergetics determines glutamate-induced delayed calcium deregulation in neurons. Biochim Biophys Acta. 2010;1800:297–304.

    Article  PubMed  CAS  Google Scholar 

  52. Henneberry RC, Novelli A, Vigano MA, Reilly JA, Cox JA, Lysko PG. Energy-related neurotoxicity at the NMDA receptor: a possible role in Alzheimer’s disease and related disorders. Prog Clin Biol Res. 1989;317:143–56.

    PubMed  CAS  Google Scholar 

  53. Jacquard C, Trioulier Y, Cosker F, et al. Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation 5. FASEB J. 2006;20:1021–3.

    Article  PubMed  CAS  Google Scholar 

  54. Hong MG, Myers AJ, Magnusson PK, Prince JA. Transcriptome-wide assessment of human brain and lymphocyte senescence. PLoS One. 2008;3:e3024.

    Article  PubMed  Google Scholar 

  55. Dencher NA, Frenzel M, Reifschneider NH, Sugawa M, Krause F. Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci. 2007;1100:291–8.

    Article  PubMed  CAS  Google Scholar 

  56. Krishnan KJ, Greaves LC, Reeve AK, Turnbull DM. Mitochondrial DNA mutations and aging. Ann N Y Acad Sci. 2007;1100:227–40.

    Article  PubMed  CAS  Google Scholar 

  57. Vesce S, Jekabsons MB, Johnson-Cadwell LI, Nicholls DG. Acute glutathione depletion restricts mitochondrial ATP export in cerebellar granule neurons. J Biol Chem. 2005;280:38720–8.

    Article  PubMed  CAS  Google Scholar 

  58. Turnbull HE, Lax NZ, Diodato D, Ansorge O, Turnbull DM. The mitochondrial brain: from mitochondrial genome to neurodegeneration. Biochim Biophys Acta. 2010;1802:111–21.

    Article  PubMed  CAS  Google Scholar 

  59. Martin LJ. The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy. Biochim Biophys Acta. 2010;1802:186–97.

    Article  PubMed  CAS  Google Scholar 

  60. Richardson JR, Caudle WM, Guillot TS, et al. Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci. 2007;95:196–204.

    Article  PubMed  CAS  Google Scholar 

  61. Fan MM, Raymond LA. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol. 2007;81:272–93.

    Article  PubMed  CAS  Google Scholar 

  62. Frantseva MV, Velazquez JLP, Tsoraklidis G, et al. Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience. 2000;97:431–5.

    Article  PubMed  CAS  Google Scholar 

  63. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta. 2010;1802:2–10.

    Article  PubMed  CAS  Google Scholar 

  64. Kaul M. HIV’s double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci. 2008;13:2484–94.

    Article  PubMed  CAS  Google Scholar 

  65. Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF. Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta. 2010;1802:122–34.

    Article  PubMed  CAS  Google Scholar 

  66. Panov A, Dikalov S, Shalbueva N, Taylor G, Sherer T, Greenamyre JT. Rotenone model of Parkinson’s disease: multiple brain mitochondria dysfunctions after short-term systemic rotenone intoxication. J Biol Chem. 2005;280:42026–35.

    Article  PubMed  CAS  Google Scholar 

  67. Ayala A, Venero JL, Cano J, Machado A. Mitochondrial toxins and neurodegenerative diseases. Front Biosci. 2007;12:986–1007.

    Article  PubMed  CAS  Google Scholar 

  68. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 2005;57:695–703.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Nicholls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Nicholls, D.G. (2012). Mitochondria, Sodium, and Calcium in Neuronal Dysfunction. In: Reeve, A., Krishnan, K., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, London. https://doi.org/10.1007/978-0-85729-701-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-701-3_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-700-6

  • Online ISBN: 978-0-85729-701-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics