Skip to main content

Vision-Based Target Following

  • Chapter
Unmanned Rotorcraft Systems

Part of the book series: Advances in Industrial Control ((AIC))

  • 3900 Accesses

Abstract

Finally, in Chap. 11, we document the design and implementation of a comprehensive vision system for an unmanned rotorcraft to realize missions such as ground target detection and following. To realize the autonomous ground target seeking and following, a sophisticated vision algorithm is proposed to detect the target and estimate relative distance to the target using an onboard color camera together with necessary navigation sensors. The vision feedback is then integrated with the automatic flight control system to guide the unmanned helicopter to follow the ground target inflight. The overall vision system is tested in actual flight missions, and the results obtained show that it is robust and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amidi O, Kanade T, Miller R. Vision-based autonomous helicopter research at Carnegie Mellon Robotics Institute 1991–1997. In: Proc American helicopter society int conf, Gifu, Japan; 1998. p. 1–12.

    Google Scholar 

  2. Bradski GR, Clara S. Computer vision face tracking for use in a perceptual user interface. Intel Technol J. 1998;Q2:1–15.

    Google Scholar 

  3. Boykov Y, Huttenlocher DP. Adaptive Bayesian recognition in tracking rigid objects. In: Proc IEEE conf computer vision pattern recognition, Hilton Head, SC; 2000. p. 697–704.

    Google Scholar 

  4. Cai G, Lin F, Chen BM, Lee TH. Systematic design methodology and construction of UAV helicopters. Mechatronics. 2008;18:545–58.

    Article  Google Scholar 

  5. Camera calibration toolbox for MATLAB. http://www.vision.caltech.edu/bouguetj/calib_doc/. Cited Aug 2010.

  6. Chaumette F, Hutchinson S. Visual servo control part I: basic approaches. IEEE Robot Autom Mag. 2006;13:82–90.

    Article  Google Scholar 

  7. Chaumette F, Hutchinson S. Visual servo control part II: advanced approaches. IEEE Robot Autom Mag. 2007;14:109–18.

    Article  Google Scholar 

  8. Cheng Y. Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell. 1995;17:790–9.

    Article  Google Scholar 

  9. Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell. 2003;25:564–77.

    Article  Google Scholar 

  10. Foley JD, Vandam A, Feiner SK, Hughes JF. Fundamentals of interactive computer graphics. Reading: Addison Wesley; 1990.

    Google Scholar 

  11. Fowers SG, Lee DJ, Tippetts BJ, Lillywhite KD, Dennis AW, Archibald JK. Vision aided stabilization and the development of a quad-rotor micro UAV. In: Proc 2007 IEEE int symposium computational intell robot automat, Jacksonville, FL; 2007. p. 143–8.

    Chapter  Google Scholar 

  12. Franklin G, Powell FD, Naeini AE. Feedback control of dynamic systems. 4th ed. Upper Saddle River: Prentice Hall; 2002.

    Google Scholar 

  13. Gonzalez G, Woods RE. Digital image processing. Reading: Addison Wesley; 1992.

    Google Scholar 

  14. Guenard N, Hamel T, Mahony R. A practical visual servo control for an unmanned aerial vehicle. IEEE Trans Robot. 2008;24:331–40.

    Article  Google Scholar 

  15. He R, Bachrach A, Achtelik M, et al. On the design and use of a micro air vehicle to track and avoid adversaries. Int J Robot Res. 2010;29:529–46.

    Article  Google Scholar 

  16. Heikkila J, Silven O. A four-step camera calibration procedure with implicit image correction. In: Proc 1997 conf computer vision pattern recognition. Puerto Rico: San Juan; 1997. p. 1106–12.

    Chapter  Google Scholar 

  17. Hrabar S, Sukhatme GS, Corke P, Usher K, Roberts J. Combined optic-flow and stereo-based navigation of urban canyons for a UAV. In: Proc IEEE/RSJ int conf intell robot syst, Edmonton, Canada; 2005. p. 3309–16.

    Chapter  Google Scholar 

  18. Isard M, Blake A. Condensation conditional density propagation for visual tracking. Int J Comput Vis. 1998;29:5–28.

    Article  Google Scholar 

  19. Johnson EN, Calise AJ, Watanabe Y, Ha J, Neidhoefer JC. Real-time vision-based relative aircraft navigation. J Aerosp Comput Inf Commun. 2007;4:707–38.

    Article  Google Scholar 

  20. Kim J, Sukkarieh S. SLAM aided GPS/INS navigation in GPS denied and unknown environments. In: Proc int symposium GNSS/GPS, Sydney, Australia; 2004.

    Google Scholar 

  21. Li XR, Jilkov VP. Survey of maneuvering target tracking, part I: dynamic models. IEEE Trans Aerosp Electron Syst. 2003;39:1333–64.

    Article  Google Scholar 

  22. Lin F. Development and applications of a vision-based unmanned helicopter [PhD dissertation]. Dept of Electrical and Computer Engineering, National University of Singapore; 2011.

    Google Scholar 

  23. Lin F, Chen BM, Lum KY, Lee TH. A robust vision system on an unmanned helicopter for ground target seeking and following. In: Proc 8th world congress intell contr automat, Jinan, China; 2010. p. 276–81.

    Chapter  Google Scholar 

  24. Lin F, Lum KY, Chen BM, Lee TH. Development of a vision-based ground target detection and tracking system for a small unmanned helicopter. Sci China Ser F: Inf Sci. 2009;52:2201–15.

    Article  MATH  Google Scholar 

  25. Ma Y, Soatto S, Kosecka J, Sastry SS. An invitation to 3-D vision: from images to geometric models. New York: Springer; 2004.

    MATH  Google Scholar 

  26. Meingast M, Geyer C, Sastry S. Vision based terrain recovery for landing unmanned aerial vehicles. In: Proc IEEE conf dec contr, Atlantis, Bahamas; 2004. p. 1670–5.

    Google Scholar 

  27. Mejias LO, Saripalli S, Cervera P, Sukhatme GS. Visual servoing of an autonomous helicopter in urban areas using feature tracking. J Field Robot. 2006;23:185–99.

    Article  Google Scholar 

  28. NUS UAV research. http://uav.ece.nus.edu.sg. Cited Aug 2010.

  29. Plataniotis KN, Venetsanopoulos AN. Color image processing and applications. New York: Springer; 2000.

    Google Scholar 

  30. Porikli F. Achieving real-time object detection and tracking under extreme conditions. J Real-Time Image Process. 2006;1:33–40.

    Article  Google Scholar 

  31. Rodriguez PA, Geckle WJ, Barton JD, Samsundar J, Gao T, Brown MZ, Martin SR. An emergency response UAV surveillance system. In: Proc AMIA annual symposium, Washington, DC; 2006. p. 1078.

    Google Scholar 

  32. Schell FR, Dickmanns ED. Autonomous landing of airplanes by dynamic machine vision. Mach Vis Appl. 1994;7:127–34.

    Article  Google Scholar 

  33. Shakernia O, Ma Y, Koo TJ, Sastry S. Landing an unmanned air vehicle: vision based motion estimation and nonlinear control. Asian J Control. 1999;1:128–45.

    Article  Google Scholar 

  34. Shakernia O, Vidal R, Sharp CS, Ma Y, Sastry S. Multiple view motion estimation and control for landing an unmanned aerial vehicle. In: Proc IEEE int conf robot automat, Washington, DC; 2002. p. 2793–8.

    Google Scholar 

  35. Sharp CS, Shakernia O, Sastry S. A vision system for landing an unmanned aerial vehicle. In: Proc IEEE int conf robot automat, Seoul, Korea; 2001. p. 1720–7.

    Google Scholar 

  36. Shih YT. The reversibility of six geometric color spaces. Photogramm Eng Remote Sens. 1995;61:1223–32.

    Google Scholar 

  37. Smith AR. Color gamut transform pairs. In: Proc 5th annual conf computer graphics interactive techniques, New York; 1978. p. 12–9.

    Google Scholar 

  38. Veeraraghavan H, Schrater P, Papanikolopoulos N. Robust target detection and tracking through integration of motion, color and geometry. Comput Vis Image Underst. 2006;103:121–38.

    Article  Google Scholar 

  39. Wikipedia. Color space. http://en.wikipedia.org/wiki/Color_space. Cited Aug 2010.

  40. Wren CR, Azarbayejani A, Darrell T, Pentland AP. Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell. 1997;19:780–5.

    Article  Google Scholar 

  41. Zhu Q, Avidan S, Cheng KT. Flexible camera calibration by viewing a plane from unknown orientations. In: Proc 7th IEEE int conf computer vision, Kerkyra, Greece; 1999. p. 666–73.

    Google Scholar 

  42. Zhou QM, Aggarwalb JK. Object tracking in an outdoor environment using fusion of features and cameras. Image Vis Comput. 2006;24:1244–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben M. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cai, G., Chen, B.M., Lee, T.H. (2011). Vision-Based Target Following. In: Unmanned Rotorcraft Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-635-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-635-1_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-634-4

  • Online ISBN: 978-0-85729-635-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics