Skip to main content

Cognitive Sensor Networks

A Domain Theoretic Cognitive Architecture

  • Chapter
Distributed Video Sensor Networks

Abstract

Our overall goal is to develop a cognitive architecture which will allow autonomous and robust operation of sensor–actuator networks. To achieve this, the perception, concept formation, action cycle will be informed by domain theories of signal analysis, physical phenomena, and behavior. Example scenarios include cognitive vehicles and buildings in which the system understands itself and the activities in and around it by means of distributed video and other sensors. This includes discovery of the cognitive system’s own sensing and actuation capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chomsky, N.: Biolinguistic explorations: design, development, evolution. Int. J. Philos. Stud. 15(1), 1–21 (2007)

    Article  Google Scholar 

  2. Dekhil, M., Henderson, T.C.: Instrumented sensor system architecture. Int. J. Robot. Res. 17(4), 402–417 (1998)

    Article  Google Scholar 

  3. Grupen, R., Henderson, T.C.: Autochthonous behaviors: Mapping perception to action. In: Henderson, T.C. (ed.) NATO ASI on Traditional and Non-Traditional Robotic Sensors, pp. 285–312. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  4. Henderson, T.C.: Computational Sensor Networks. Springer, New York (2009)

    Book  Google Scholar 

  5. Henderson, T.C., Efros, A.A.: Evolutionary teleomorphology. J. Robot. Auton. Syst. 19(1), 23–32 (1996)

    Article  Google Scholar 

  6. Henderson, T.C., Shilcrat, E.: Logical sensor systems. J. Robot. Syst. 1(2), 169–193 (1984)

    Article  Google Scholar 

  7. Henderson, T.C., Sikorski, K., Grant, E., Luthy, K.: Computational sensor networks. In: IEEE Intl. Conf. on Intelligent Robots and Systems, San Diego, CA. Springer, Berlin (2007)

    Google Scholar 

  8. Henderson, T.C., Fan, X., Alford, A., Grant, E., Cohen, E.: Innate theories as a basis for autonomous mental development. In: Workshop on Autonomous Mental Development for Intelligent Systems, IROS 2009, St. Louis, MO. IEEE, New York (2009)

    Google Scholar 

  9. Henderson, T.C., Fan, Y., Alford, A., Grant, E., Cohen, E.: Innate theories as a basis for autonomous mental development. Technical Report UUCS-09-004, The University of Utah (2009)

    Google Scholar 

  10. Henderson, T.C., Fan, Y., Devnani, S., Kumar, S., Cohen, E., Grant, E.: Symmetry as an organizational principle in cognitive sensor networks. Technical Report UUCS-09-005, The University of Utah (2009)

    Google Scholar 

  11. Kuipers, B.: Drinking from the firehose of experience. Artif. Intell. Med. 44, 155–170 (2008)

    Article  Google Scholar 

  12. Kuipers, B., Beeson, P., Modayil, J., Provost, J.: Bootstrap learning of foundational representations. Connect. Sci. 18(2), 145–158 (2006)

    Article  Google Scholar 

  13. Pinker, S.: The Language Instinct. Harper Collins, New York (1994)

    Google Scholar 

  14. Popplestone, R., Grupen, R.: Symmetries in world geometry and adaptive behaviour. In: Proceedings of the Workshop on Algebraic Frames for the Perception Action Cycle, Kiel, Germany, pp. 269–283 (2000)

    Chapter  Google Scholar 

  15. Rosenberg, A.: Will genomics do more for metaphysics than Locke? In: Achinstein, P. (ed.) Scientific Evidence, pp. 186–205. The Johns Hopkins University Press, Baltimore (2005)

    Google Scholar 

  16. Sawo, F., Henderson, T.C., Sikorski, K., Hanebeck, U.: Sensor node localization methods based on local observations of distributed natural phenomena. In: IEEE Intl. Conf. on Multisensor Fusion and Integration, Seoul, South Korea, pp. 301–308 (2008)

    Google Scholar 

  17. Sloman, A.: Architectural and representational requirements for seeing processes and affordances. In: Heinke, D., Mavritsaki, E. (eds.) Computational Modelling in Behavioural Neuroscience: Closing the Gap between NeuroPhysiology and Behaviour Psychology Press, London (2008)

    Google Scholar 

  18. Sloman, A.: The well designed young mathematician. Artif. Intell. 172(18), 2015–2034 (2008)

    Article  MATH  Google Scholar 

  19. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 11(2), 151–180 (2008). Special Issue on Autonomous Mental Development

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Henderson, T.C. (2011). Cognitive Sensor Networks. In: Bhanu, B., Ravishankar, C., Roy-Chowdhury, A., Aghajan, H., Terzopoulos, D. (eds) Distributed Video Sensor Networks. Springer, London. https://doi.org/10.1007/978-0-85729-127-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-127-1_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-126-4

  • Online ISBN: 978-0-85729-127-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics