Skip to main content

The Multifractal Spectra of V-Statistics

  • Chapter
  • First Online:
Further Developments in Fractals and Related Fields

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let (X, T) be a topological dynamical system and let Φ : X r → ℝ be a continuous function on the product space X r = X ×⋯ ×X (r ≥ 1). We are interested in the limit of V-statistics taking Φ as kernel:

$$\lim\limits_{n\rightarrow \infty }{n}^{-r}\displaystyle\sum\limits_{ 1\leq i_{1},\cdots \,,i_{r}\leq n}\Phi ({T}^{i_{1} }x,\cdots \,,{T}^{i_{r} }x).$$

The multifractal spectrum of topological entropy of the above limit is expressed by a variational principle when the system satisfies the specification property. Unlike the classical case (r = 1) where the spectrum is an analytic function when Φ is Hölder continuous, the spectrum of the limit of higher-order V-statistics (r ≥ 2) may be discontinuous even for very nice kernel Φ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., Weiss, B.: Strong laws for L- and U-statistics. Trans. Amer. Math. Soc. 348, 2845–2866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Assani, I.: Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel. J. Math. 1–3, 111–124 (1987)

    MathSciNet  Google Scholar 

  3. Barreira, L.: “Dimension and recurrence in hyperbolic dynamics.” Progress in Mathematics. Soc. 272. Birkhäuser, Basel (2008)

    Google Scholar 

  4. Barreira, L., Saussol, B., Schmeling, J.: Higher-dimensional multifractal analysis. J. Math. Pures Apple. 81, 67–91 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Bergelson, V.: Weakly mixing PET. Ergod. Th. Dynam. Sys. 3, 337–349 (1987)

    MathSciNet  Google Scholar 

  6. Blokh, A.M.: Decomposition of dynamical systems on an interval. Usp. Mat. Nauk. 38, 179–180 (1983)

    MathSciNet  Google Scholar 

  7. Bourgain, J.: Double recurrence and almost sure convergence. J. Reine Angew. Math. 404, 140–161 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)

    Article  MathSciNet  Google Scholar 

  9. Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Springer, Berlin (1976)

    MATH  Google Scholar 

  10. Fan, A.H.: Sur les dimensions de mesures. Studia Math. 111, 1–17 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Fan, A.H., Feng, D.J., Wu, J.: Recurrence, entropy and dimension. J. London Math. Soc. 64, 229–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, A.H., Liao, L.M., Ma, J.H.: Level sets of multiple ergodic averages. Monatshefte für Mathematik (2011) online

    Google Scholar 

  13. Fan, A.H., Liao, L.M., Peyrière, J.: Generic points in systems of specification and Banach valued Birkhoff ergodic average. DCDS 21, 1103–1128 (2008)

    Article  MATH  Google Scholar 

  14. Fan, A.H., Schmeling, J., Wu, M.: Multifractal analysis of multiple ergodic averages. C. R. Mathématique. 349(17–18), 961–964 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. d’Analyse Math. 31, 204–256 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Host, B., Kra, B.: Nonconventional ergodic averages and nilmanifolds. Ann. Math. 161, 397–488 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kenyon, R., Peres, Y., Solomyak, B.: Hausdorff dimension of the multiplicative golden mean shift. C. R. Mathematique 349(11–12), 625–628 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  19. Ruelle, D.: Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics. Encyclopedia of Mathematics and Its Applications, vol. 5. Addison-Wesley, Boston (1978)

    Google Scholar 

  20. Schmeling, J.: Symbolic dynamics for β-shifts and self-normal numbers. Ergod. Th. Dynam. Sys. 17, 675–694 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-hua Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fan, Ah., Schmeling, J., Wu, M. (2013). The Multifractal Spectra of V-Statistics. In: Barral, J., Seuret, S. (eds) Further Developments in Fractals and Related Fields. Trends in Mathematics. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8400-6_7

Download citation

Publish with us

Policies and ethics