Skip to main content

Multivariate Davenport Series

  • Chapter
  • First Online:
Further Developments in Fractals and Related Fields

Part of the book series: Trends in Mathematics ((TM))

  • 1397 Accesses

Abstract

We consider series of the form ∑a n {nx}, where nZ d and {x} is the sawtooth function. They are the natural multivariate extension of Davenport series. Their global (Sobolev) and pointwise regularity are studied and their multifractal properties are derived. Finally, we list some open problems which concern the study of these series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abry, P., Jaffard, S., Wendt, H.: Irregularities and scaling in signal and image processing: multifractal analysis. In: Frame, M. (ed.) Benoit Mandelbrot: A Life in Many Dimensions. World Scientific (2013)

    Google Scholar 

  2. Abry, P., Wendt, H., Jaffard, S.: When Van Gogh meets Mandelbrot: multifractal classification of painting’s texture. Signal Process. 93(3), 554–572 (2013) doi:10.1016/j.sigpro.2012.01.016

    Google Scholar 

  3. Apostol, T.M.: Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer, New York (1976)

    MATH  Google Scholar 

  4. Aubry, J.-M., Jaffard, S.: Random wavelet series. Comm. Math. Phys. 227(3), 483–514 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barral, J., Seuret, S.: Function series with multifractal variations. Math. Nachr. 274/275, 3–18 (2004)

    Google Scholar 

  6. Barral, J., Seuret, S.: Combining multifractal additive and multiplicative chaos. Comm. Math. Phys. 257(2), 473–497 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barral, J., Seuret, S.: Information parameters and large deviation spectrum of discontinuous measures. Real Anal. Exchange 32(2), 429–454 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Barral, J., Seuret, S.: The singularity spectrum of Lévy processes in multifractal time. Adv. Math. 214(1), 437–468 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barral, J., Seuret, S.: The multifractal nature of heterogeneous sums of Dirac masses. Math. Proc. Cambridge Philos. Soc. 144(3), 707–727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barral, J., Fournier, N., Jaffard, S., Seuret, S.: A pure jump Markov process with a random singularity spectrum. Ann. Probab. 38(5), 1924–1946 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben Slimane, M.: Multifractal formalism and anisotropic self-similar functions. Math. Proc. Cambridge Philos. Soc. 124(2), 329–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beresnevich, V., Velani, S.: A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. Math. (2) 164(3), 971–992 (2006)

    Google Scholar 

  13. Beresnevich, V., Velani, S.: Schmidt’s theorem, Hausdorff measures and slicing. Int. Math. Res. Not. Article ID 48794, 1–24 (2006)

    Google Scholar 

  14. Beresnevich, V., Bernik, V., Dodson, M., Velani, S.: Classical metric Diophantine approximation revisited. In: Analytic Number Theory, pp. 38–61. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  15. Brémont, J.: Davenport series and almost-sure convergence. Q. J. Math. 62(4), 825–843 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. de la Bretèche, R.: Estimation de sommes multiples de fonctions arithmétiques. Compos. Math. 128(3), 261–298 (2001)

    Article  MATH  Google Scholar 

  17. de la Bretèche, R., Tenenbaum, G.: Séries trigonométriques à coefficients arithmétiques. J. Anal. Math. 92, 1–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Calderón, A.-P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 171–225 (1961)

    MathSciNet  MATH  Google Scholar 

  19. Davenport, H.: On some infinite series involving arithmetical functions. Quart. J. Math. (Oxford Ser.) 8, 8–13 (1937)

    Google Scholar 

  20. Davenport, H.: On some infinite series involving arithmetical functions. II. Quart. J. Math. (Oxford Ser.) 8, 313–320 (1937)

    Google Scholar 

  21. Durand, A.: Sets with large intersection and ubiquity. Math. Proc. Cambridge Philos. Soc. 144(1), 119–144 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Durand, A.: Large intersection properties in Diophantine approximation and dynamical systems. J. London Math. Soc. (2) 79(2), 377–398 (2009)

    Google Scholar 

  23. Durand, A.: Singularity sets of Lévy processes. Probab. Theory Relat. Fields 143(3–4), 517–544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Durand, A., Jaffard, S.: Multifractal analysis of Lévy fields. Probab. Theory Relat. Fields 153(1-2), 45–96 (2012) doi:10.1007/s00440-011-0340-0.

    Google Scholar 

  25. Essouabri, D., Matsumoto, K., Tsumura, H.: Multiple zeta-functions associated with linear recurrence sequences and the vectorial sum formula. Canad. J. Math. 63(2), 241–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Falconer, K.: Sets with large intersection properties. J. London Math. Soc. (2) 49(2), 267–280 (1994)

    Google Scholar 

  27. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  28. Hecke, E.: Über analytische Funktionen und die Verteilung von Zahlen mod. eins. Hamb. Abh. 1, 54–76 (1921)

    Google Scholar 

  29. Hooley, C.: On the difference of consecutive numbers prime to n. Acta Arith. 8, 343–347 (1962/1963)

    Google Scholar 

  30. Hooley, C.: On the difference between consecutive numbers prime to n. II. Publ. Math. Debrecen 12, 39–49 (1965)

    MathSciNet  MATH  Google Scholar 

  31. Hooley, C.: On the difference between consecutive numbers prime to n. III. Math. Z. 90, 355–364 (1965)

    Google Scholar 

  32. Jaffard, S.: The spectrum of singularities of Riemann’s function. Rev. Mat. Iberoamericana 12(2), 441–460 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jaffard, S.: Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jaffard, S.: The multifractal nature of Lévy processes. Probab. Theory Relat. Fields 114(2), 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jaffard, S.: On Davenport expansions. In: Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 1. In: Proceedings of Symposia in Pure Mathematics, vol. 72, pp. 273–303. American Mathematical Society, Providence (2004)

    Google Scholar 

  36. Jaffard, S.: Wavelet techniques in multifractal analysis. In: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2. In: Proceedings of Symposia in Pure Mathematics, vol. 72, pp. 91–151. American Mathematical Society, Providence (2004)

    Google Scholar 

  37. Jaffard, S.: Pointwise and directional regularity of nonharmonic Fourier series. Appl. Comput. Harmon. Anal. 28(3), 251–266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jaffard, S., Nicolay, S.: Pointwise smoothness of space-filling functions. Appl. Comput. Harmon. Anal. 26(2), 181–199 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jaffard, S., Nicolay, S.: Space-filling functions and Davenport series. In: Barral, J., Seuret, S. (eds.) Recent Developments in Fractals and Related Fields. Applied and Numerical Harmonic Analysis, pp. 19–34. Birkhäuser, Boston (2010)

    Chapter  Google Scholar 

  40. Kahane, J.-P., Lemarié-Rieusset, P.-G.: Fourier Series and Wavelets. Gordon & Breach, Reading (1996)

    MATH  Google Scholar 

  41. Oppenheim, H.: Ondelettes et Multifractals: Application à une fonction de Riemann en dimension 2. Ph.D. thesis, Université Paris IX Dauphine (1997)

    Google Scholar 

  42. Pólya, G., Szego, G.: Problems and Theorems in Analysis. Vol. I Series, Integral Calculus, Theory of Functions. Springer, New York (1972). Translated from the German by D. Aeppli, Die Grundlehren der mathematischen Wissenschaften, Band 193.

    Google Scholar 

  43. Riemann, B.: Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe (Habilitationsschrift, 1854). Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13 (1868)

    Google Scholar 

  44. Rogers, C.: Hausdorff Measures. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  45. Sándor, J., Mitrinović, D., Crstici, B.: Handbook of number theory. Mathematics and its Applications, vol. 351. Kluwer, Dordrecht (1996)

    Google Scholar 

  46. Young, R.M.: An introduction to nonharmonic Fourier series. Pure and Applied Mathematics, vol. 93. Academic [Harcourt Brace Jovanovich Publishers], New York (1980)

    Google Scholar 

  47. Zhou, D.: Certaines études sur la minimalité et la propriété chaotique de dynamiques p-adiques et la régularité locale des séries de Davenport avec translation de phase. Ph.D. thesis, Université Paris-Est (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Julien Brémont for pointing out a mistake in a first version of this chapter and to the anonymous referee for the careful reading and many valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Durand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Durand, A., Jaffard, S. (2013). Multivariate Davenport Series. In: Barral, J., Seuret, S. (eds) Further Developments in Fractals and Related Fields. Trends in Mathematics. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8400-6_5

Download citation

Publish with us

Policies and ethics