Skip to main content

Finite Frames for Sparse Signal Processing

  • Chapter
Finite Frames

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Over the last decade, considerable progress has been made toward developing new signal processing methods to manage the deluge of data caused by advances in sensing, imaging, storage, and computing technologies. Most of these methods are based on a simple but fundamental observation: high-dimensional data sets are typically highly redundant and live on low-dimensional manifolds or subspaces. This means that the collected data can often be represented in a sparse or parsimonious way in a suitably selected finite frame. This observation has also led to the development of a new sensing paradigm, called compressed sensing, which shows that high-dimensional data sets can often be reconstructed, with high fidelity, from only a small number of measurements. Finite frames play a central role in the design and analysis of both sparse representations and compressed sensing methods. In this chapter, we highlight this role primarily in the context of compressed sensing for estimation, recovery, support detection, regression, and detection of sparse signals. The recurring theme is that frames with small spectral norm and/or small worst-case coherence, average coherence, or sum coherence are well suited for making measurements of sparse signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sparse signal processing literature often uses the terms sensing matrix, measurement matrix, and dictionary for the frame Φ in this setting.

  2. 2.

    Theorem 9.1 has been stated in [28] using the terminology of spark, instead of the URP. The spark of a frame Φ is defined in [28] as the smallest number of frame elements of Φ that are linearly dependent. In other words, Φ satisfies the URP of order K if and only if spark(Φ)≥K+1.

  3. 3.

    Recall, with big-O notation, that f(n)=O(g(n)) if there exist positive C and n 0 such that for all n>n 0, f(n)≤Cg(n). Also, f(n)=Ω(g(n)) if g(n)=O(f(n)), and f(n)=Θ(g(n)) if f(n)=O(g(n)) and g(n)=O(f(n)).

  4. 4.

    We point out here that if one is willing to tolerate some bias in the estimate, then the estimation error can be made smaller than \(O(\sqrt{\sigma^{2}K})\); see, e.g., [18, 31].

  5. 5.

    Recently Bourgain et al. in [10] have reported a deterministic construction of frames that satisfies the RIP of K=O(N 1/2+δ). However, the constant δ in there is so small that the scaling can be considered K=O(N 1/2) for all practical purposes.

  6. 6.

    Recall the definition of the phase of a number r∈ℂ: \(\operatorname{sgn}(r) = \frac{r}{|r|}\).

References

  1. IEEE Signal Processing Magazine, special issue on compressive sampling (2008)

    Google Scholar 

  2. Bajwa, W.U., Calderbank, R., Jafarpour, S.: Model selection: two fundamental measures of coherence and their algorithmic significance. In: Proc. IEEE Intl. Symp. Information Theory (ISIT’10), Austin, TX, pp. 1568–1572 (2010)

    Chapter  Google Scholar 

  3. Bajwa, W.U., Calderbank, R., Jafarpour, S.: Why Gabor frames? Two fundamental measures of coherence and their role in model selection. J. Commun. Netw. 12(4), 289–307 (2010)

    Google Scholar 

  4. Bajwa, W.U., Calderbank, R., Mixon, D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33(1), 58–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bajwa, W.U., Haupt, J., Raz, G., Nowak, R.: Compressed channel sensing. In: Proc. 42nd Annu. Conf. Information Sciences and Systems (CISS’08), Princeton, NJ, pp. 5–10 (2008)

    Chapter  Google Scholar 

  6. Ben-Haim, Z., Eldar, Y.C., Elad, M.: Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Trans. Signal Process. 58(10), 5030–5043 (2010)

    Article  MathSciNet  Google Scholar 

  7. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodmann, B.G., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boufounos, P., Kutynio, G., Rahut, H.: Sparse recovery from combined fusion frame measurements. IEEE Trans. Inf. Theory 57(6), 3864–3876 (2011)

    Article  Google Scholar 

  10. Bourgain, J., Dilworth, S.J., Ford, K., Konyagin, S.V., Kutzarova, D.: Breaking the k 2 barrier for explicit RIP matrices. In: Proc. 43rd Annu. ACM Symp. Theory Computing (STOC’11), San Jose, California, pp. 637–644 (2011)

    Google Scholar 

  11. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calderbank, R., Casazza, P., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35, 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. In: C. R. Acad. Sci., Ser. I, Paris, vol. 346, pp. 589–592 (2008)

    Google Scholar 

  15. Candès, E.J., Plan, Y.: Near-ideal model selection by 1 minimization. Ann. Stat. 37(5A), 2145–2177 (2009)

    Article  MATH  Google Scholar 

  16. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  18. Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007)

    Article  MATH  Google Scholar 

  19. Casazza, P., Fickus, M., Mixon, D., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Casazza, P., Leon, M.: Existence and construction of finite tight frames. J. Concr. Appl. Math. 4(3), 277–289 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Appl. Comput. Harmon. Anal. 18(2–4), 387–430 (2003)

    MATH  Google Scholar 

  22. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  23. Cohen, A., Dahmen, W., Devore, R.A.: Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22(1), 211–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  26. Devore, R.A.: Nonlinear approximation. In: Iserles, A. (ed.) Acta Numerica, vol. 7, pp. 51–150. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  27. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  28. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  30. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  34. Eldar, Y., Kutyniok, G.: Compressed Sensing: Theory and Applications, 1st edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  35. Eldar, Y.C., Kuppinger, P., Bölcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010)

    Article  MathSciNet  Google Scholar 

  36. Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436(5), 1014–1027 (2012). doi:10.1016/j.laa.2011.06.027

    Article  MathSciNet  MATH  Google Scholar 

  37. Fletcher, A.K., Rangan, S., Goyal, V.K.: Necessary and sufficient conditions for sparsity pattern recovery. IEEE Trans. Inform. Theory 55(12), 5758–5772 (2009)

    Article  MathSciNet  Google Scholar 

  38. Foster, D.P., George, E.I.: The risk inflation criterion for multiple regression. Ann. Stat. 22(4), 1947–1975 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Genovese, C.R., Jin, J., Wasserman, L., Yao, Z.: A comparison of the lasso and marginal regression. J. Mach. Learn. Res. 13, 2107–2143 (2012)

    Google Scholar 

  40. Geršgorin, S.A.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 6, 749–754 (1931)

    Google Scholar 

  41. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  42. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49(12), 3320–3325 (2003)

    Article  MathSciNet  Google Scholar 

  43. Hajek, B., Seri, P.: Lex-optimal online multiclass scheduling with hard deadlines. Math. Oper. Res. 30(3), 562–596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Haupt, J., Bajwa, W.U., Raz, G., Nowak, R.: Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inform. Theory 56(11), 5862–5875 (2010)

    Article  MathSciNet  Google Scholar 

  45. Haupt, J., Nowak, R.: Compressive sampling for signal detection. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. III-1509–III-1512 (2007)

    Google Scholar 

  46. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377(15), 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, pp. 772–780 (2009)

    Google Scholar 

  48. Isermann, H.: Linear lexicographic optimization. OR Spektrum 4(4), 223–228 (1982)

    Article  MATH  Google Scholar 

  49. Kutyniok, G., Pezeshki, A., Calderbank, R., Liu, T.: Robust dimension reduction, fusion frames, and Grassmannian packings. Appl. Comput. Harmon. Anal. 26(1), 64–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  51. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  52. Malozemov, V.N., Pevnyi, A.B.: Equiangular tight frames. J. Math. Sci. 157(6), 789–815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34(3), 1436–1462 (2006)

    Article  MATH  Google Scholar 

  54. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Paredes, J., Wang, Z., Arce, G., Sadler, B.: Compressive matched subspace detection. In: Proc. 17th European Signal Processing Conference, Glasgow, Scotland, pp. 120–124 (2009)

    Google Scholar 

  57. Reeves, G., Gastpar, M.: A note on optimal support recovery in compressed sensing. In: Proc. 43rd Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA (2009)

    Google Scholar 

  58. Renes, J.: Equiangular tight frames from Paley tournaments. Linear Algebra Appl. 426(2–3), 497–501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7(4), 1307–1330 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  60. Scharf, L.L.: Statistical Signal Processing. Addison-Wesley, Cambridge (1991)

    MATH  Google Scholar 

  61. Schnass, K., Vandergheynst, P.: Average performance analysis for thresholding. IEEE Signal Process. Lett. 14(11), 828–831 (2007)

    Article  Google Scholar 

  62. Stojnic, M., Parvaresh, F., Hassibi, B.: On the representation of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8), 3075–3085 (2009)

    Article  MathSciNet  Google Scholar 

  63. Strohmer, T.: A note on equiangular tight frames. Linear Algebra Appl. 429(1), 326–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sustik, M., Tropp, J.A., Dhillon, I.S., Heath, R.W. Jr.: On the existence of equiangular tight frames. Linear Algebra Appl. 426(2–3), 619–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  67. Tropp, J., Gilbert, A., Muthukrishnan, S., Strauss, M.: Improved sparse approximation over quasiincoherent dictionaries. In: Proc. IEEE Conf. Image Processing (ICIP’03), pp. 37–40 (2003)

    Google Scholar 

  68. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  69. Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52(3), 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  70. Tropp, J.A.: Norms of random submatrices and sparse approximation. In: C. R. Acad. Sci., Ser. I, Paris, vol. 346, pp. 1271–1274 (2008)

    Google Scholar 

  71. Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(5), 948–958 (2010)

    Article  Google Scholar 

  73. Wainwright, M.J.: Sharp thresholds for high-dimensional and noisy sparsity recovery using 1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55(5), 2183–2202 (2009)

    Article  MathSciNet  Google Scholar 

  74. Wang, Z., Arce, G., Sadler, B.: Subspace compressive detection for sparse signals. In: IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 3873–3876 (2008)

    Google Scholar 

  75. Welch, L.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20(3), 397–399 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  76. Zahedi, R., Pezeshki, A., Chong, E.K.P.: Robust measurement design for detecting sparse signals: equiangular uniform tight frames and Grassmannian packings. In: Proc. 2010 American Control Conference (ACC), Baltimore, MD (2010)

    Google Scholar 

  77. Zahedi, R., Pezeshki, A., Chong, E.K.P.: Measurement design for detecting sparse signals. Phys. Commun. 5(2), 64–75 (2012). doi:10.1016/j.phycom.2011.09.007

    Article  Google Scholar 

  78. Zelnik-Manor, L., Rosenblum, K., Eldar, Y.C.: Sensing matrix optimization for block-sparse decoding. IEEE Trans. Signal Process. 59(9), 4300–4312 (2011)

    Article  MathSciNet  Google Scholar 

  79. Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waheed U. Bajwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bajwa, W.U., Pezeshki, A. (2013). Finite Frames for Sparse Signal Processing. In: Casazza, P., Kutyniok, G. (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8373-3_9

Download citation

Publish with us

Policies and ethics