Skip to main content

OTA-C Filters

  • Chapter
  • First Online:
VLSI Analog Filters

Abstract

In this chapter, the realization of filters using operational transconductance amplifiers (OTA) is considered. Building blocks such as OTA-C integrators, OTA-C differentiators, and first-order low-pass, high-pass, and all-pass OTA-C filters are described. Circuits with current/voltage input/output are considered. The use of dual current output OTAs is also studied. The realization of second-order voltage and current mode filters based on Tarmy–Ghausi active RC configuration as well as two integrator loop has been presented in detail. The design of ladder filters using simulated inductors and FDNRs is considered. The technique for high-order current-mode OTA-C filters based on coupled biquads is also described. In addition, the use of analytical synthesis technique to derive multiloop feedback type OTA-C filters is described. The effect of OTA nonidealities using pole-zero model as well as finite output resistance and capacitance of the OTAs on chosen filter configurations are presented. Structures for OTA-C oscillators are also presented. Noise analysis techniques and estimation of distortion are also described. SPICE simulation examples are given in order to illustrate certain ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva-Martinez, J., Steyaert, M.S.J., Sansen, W.: A 10.7 MHz 68-dB SNR CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits 27, 1843–1853 (1992)

    Article  Google Scholar 

  2. Tsividis, Y.P.: Integrated continuous-time filter design-an overview. IEEE J. Solid-State Circuits 29, 166–176 (1994)

    Article  Google Scholar 

  3. Geiger, R.L., Sanchez-Sinencio, E.: Active filter design using operational transconductance amplifiers: a tutorial. IEEE Circuits Devices Mag. 1, 20–32 (1985)

    Article  Google Scholar 

  4. Ananda Mohan, P.V.: Generation of OTA-C filter structures from active RC filter structures. IEEE Trans. Circuits Syst. 37, 656–660 (1990)

    Article  Google Scholar 

  5. Sun, Y., Fidler, J.K.: Structure generation of current-mode two-integrator loop dual output-OTA grounded capacitor filters. IEEE Trans. Circuits Syst. II 43, 659–663 (1996)

    Article  Google Scholar 

  6. Wu, J., El-Masry, E.I.: Design of current-mode ladder filters using coupled biquads. IEEE Trans. Circuits Syst. II 45, 1445–1454 (1998)

    Article  Google Scholar 

  7. Kamat, D.V., Ananda Mohan, P.V., Gopalakrishna Prabhu, K.: Novel first-order and second-order current mode filters using dual-output OTAs and grounded capacitors. IEEE TENCON (2008). doi:10.1109/TENCON.2008.4766492

  8. Al-Hashimi, B.M., Dudek, F., Moniri, M.: Current-mode group-delay equalization using pole-zero mirroring technique. IEE Proc. Circuits Devices Syst. 147, 257–263 (2000)

    Article  Google Scholar 

  9. Sanchez-Sinencio, E., Geiger, R.L., Nevarez-Lozano, H.: Generation of continuous-time two integrator loop OTA filter structures. IEEE Trans. Circuits Syst. CAS-35, 936–945 (1988)

    Article  Google Scholar 

  10. Tsukutani, T., Sumi, Y., Fukui, Y.: Electronically tunable current-mode OTA-C biquad using two-integrator loop structure. Frequenz 60, 53–56 (2006)

    Google Scholar 

  11. Chang, C.M.: New multifunction OTA-C biquads. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 46, 820–824 (1999)

    Article  Google Scholar 

  12. Horng, J.W.: Voltage-mode universal biquadratic filter using two OTAs. Act. Passive Electron. Compon. 27, 85–89 (2004)

    Article  Google Scholar 

  13. Horng, J.W.: Voltage-mode universal biquadratic filter with one input and five outputs using OTAs. Int. J. Electron. 89, 729–737 (2002)

    Article  Google Scholar 

  14. Chang, C.-M.: Analytical synthesis of the digitally programmable voltage-mode OTA-C universal biquad. IEEE Trans. Circuits Syst. II Expr. Briefs 53, 607–611 (2006)

    Article  Google Scholar 

  15. Sun, Y.: Second-order OTA-C filters derived from Nawrocki-Klein biquad. Electron. Lett. 34, 1449–1450 (1998)

    Article  Google Scholar 

  16. Nawrocki, R., Klein, U.: New OTA-capacitor realization of a universal biquad. Electron. Lett. 22, 50–51 (1986)

    Article  Google Scholar 

  17. Al-Hashimi, B.M., Dudek, F., Moniri, M., Living, J.: Integrated universal biquad based on triple-output OTAs and using digitally programmable zeros. IEE Proc. Circuits Devices Syst. 145, 192–196 (1998)

    Article  Google Scholar 

  18. Abuelma’atti, M.T., Bentrcia, A.: New universal current-mode multiple-input multiple output OTA-C filter. The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, Tainan, pp. 1037–1039, (2004)

    Google Scholar 

  19. Chang, C., Al-Hashimi, B.M., Neil Ross, J.: Unified active filter biquad structures. IEE Proc. Circuits Devices Syst. 151(44), 273–277 (2004)

    Article  Google Scholar 

  20. Bhaskar, D.R., Singh, A.K., Sharma, R.K., Senani, R.: New OTA-C universal current-mode/transadmittance biquads. IEICE Electron. Expr. 2, 8–13 (2005)

    Article  Google Scholar 

  21. Chunhua, W., Ling, Z., Tao, L.: A new OTA-C current-mode biquad filter with single-input and multiple outputs. AEU Int. J. Electron. Commun. 62, 232–234 (2008)

    Article  Google Scholar 

  22. Biolek, D., Biolkova, V., Kolka, Z.: Universal current-mode OTA-C KHN biquad. Proc. World. Acad. Sci. Eng. Tech. 25, 289–292 (2007)

    Google Scholar 

  23. Chang, C.M., Pai, S.K.: Universal current-mode OTA-C biquad with the minimum components. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47, 1235–1238 (2000)

    Article  Google Scholar 

  24. Kamat, D.V., Ananda Mohan, P.V., Gopalakrishna Prabhu, K.: Novel first-order and second-order current-mode filters using multiple-output operational transconductance amplifiers. Circuits Syst. Signal Process. 29, 553–576 (2010)

    Article  MATH  Google Scholar 

  25. Bhaskar, D.R., Sharma, R.K., Singh, A.K., Senani, R.: New dual-mode biquads using OTAs. Frequenz 60, 11–12 (2006)

    Article  Google Scholar 

  26. Moschytz, G.S.: High-Q factor insensitive active RC network similar to the Tarmy-Ghausi circuit, but using single-ended operational amplifiers. Electron. Lett. 8, 458–459 (1972)

    Article  Google Scholar 

  27. Tarmy, R., Ghausi, M.S.: Very high Q, insensitive active RC networks. IEEE Trans. Circuit Theory CT-17, 358–366 (1970)

    Article  Google Scholar 

  28. Mulawka, J., Bialko, M.: Modifications of Tarmy-Ghausi active filter. Electron. Lett. 10(18), 380–381 (1974)

    Article  Google Scholar 

  29. Comer, D.J.: High-frequency narrow-band active filters. IEEE Trans. Circuits Syst. CAS-33(8), 838–840 (1986)

    Article  Google Scholar 

  30. Comer, D.T., Comer, D.J., Gonzalez, J.R.: A high-frequency integrable band pass filter configuration. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44(10), 856–861 (1997)

    Article  Google Scholar 

  31. Toker, S., Ozoguz, O., Cicekoglu, O., Acar, C.: Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q band-pass filter configuration. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47, 949–954 (2000)

    Article  Google Scholar 

  32. Kamat, D.V., Ananda Mohan, P.V., Gopalakrishna Prabhu, K.: Current-mode operational transconductance capacitor biquad filter structures based on Tarmy-Ghausi active RC filter and second-order digital all-pass filters. IEE Circuits Devices Syst. 4, 346–364 (2010)

    Article  Google Scholar 

  33. Oppenheim, A.V., Schafer, R.W.: Digital processing of signals. Wiley, New York (2007)

    Google Scholar 

  34. Mitra, S.K., Hirano, K.: Digital all-pass networks. IEEE Trans. Circuits Syst. CAS-21, 688–700 (1974)

    Article  Google Scholar 

  35. Gray, A.H., Markel, J.D.: Digital lattice and ladder filter synthesis. IEEE Trans. Audio Electroacoust. AU-21, 491–500 (1973)

    Article  MathSciNet  Google Scholar 

  36. Ananda Mohan, P.V.: Novel OTA-C filter structures using grounded capacitors. Proceedings of IEEE ISCAS, Singapore, pp. 1347–1350, (1991)

    Google Scholar 

  37. Sun, Y.: OTA-C filter design using inductor substitution and Bruton transformation methods. Electron. Lett. 34, 2082–2083 (1998)

    Article  Google Scholar 

  38. Hwang, Y.S., Liu, S.I., Wu, D.S., Wu, Y.P.: Table-based linear transformation filters using OTA-C technique. Electron. Lett. 30, 2021–2022 (1994)

    Article  Google Scholar 

  39. Dimopoulos, H.G., Constantinides, A.G.: Linear transformation active filters. IEEE Trans. Circuits Syst. 25, 845–852 (1978)

    Article  Google Scholar 

  40. Ramirez-Angulo, J., Sanchez-Sinencio, E.: High frequency compensated current-mode ladder filters using multiple output OTAs. IEEE Trans. Circuits Syst. II CAS-41, 581–586 (1994)

    Article  Google Scholar 

  41. Sun, Y., Fidler, J.K.: Structure generation and design of multiple-feedback OTA-grounded capacitor filters. IEEE Trans. Circuits Syst. I CAS-44, 1–11 (1997)

    Google Scholar 

  42. Chang, C.M., Al-Hashimi, B.M., Sun, Y., Ross, J.N.: New high-order filter structures using single-ended-input OTAs and grounded capacitors. IEEE Trans. Circuits Syst. I Regul. Pap. 51, 458–463 (2004)

    Google Scholar 

  43. Chang, C.M., Al Hashimi, B.M.: Analytical synthesis of current mode high order OTA-C filters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(9), 1188–1192 (2003)

    Article  Google Scholar 

  44. Tu, S.H., Chang, C.M., Ross, J.N., Swamy, M.N.S.: Analytical synthesis of current-mode high-order single-ended-input OTA and equal-capacitor elliptic filter structures with the minimum number of components. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 54, 2195–2210 (2007)

    Article  Google Scholar 

  45. Chang, C.M., Hou, C.L., Chung, W.Y., Horng, J.W., Tu, C.K.: Analytical synthesis of high-order single-ended-input OTA grounded-C all-pass and band-reject filter structures. IEEE Trans. Circuits Syst. I Regul. Pap. 53, 489–498 (2006)

    Article  Google Scholar 

  46. Laber, C.A., Gray, P.R.: A 20 MHz sixth order BiCMOS parasitic-insensitive continuous-time filter and second order equalizer optimized for disk-drive readchannels. IEEE J. Solid-State Circuits 28, 462–470 (1993)

    Article  Google Scholar 

  47. Harrison, J., Weste, N.: A 500 MHz CMOS anti-alias filter using feed-forward op-amps with local common-mode feedback. IEEE International Solid-State Circuits Conference (ISSCC) Digest Technical Papers, 1, 132–483 (2003)

    Google Scholar 

  48. Tandri, B.K., Silva-Martinez, J.: A robust feed-forward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors. IEEE J. Solid-State Circuits SC-38, 237–243 (2003)

    Article  Google Scholar 

  49. Laxminidhi, T., Prasadu, V., Pavan, S.: Widely programmable high-frequency active RC filters in CMOS technology. IEEE Trans. Circuits Syst. I 56, 327–336 (2009)

    Article  Google Scholar 

  50. Abuelma’atti, M.T.: New minimum component electronically tunable OTA-C sinusoidal oscillators. Electron. Lett. 25, 1114–1115 (1989)

    Article  Google Scholar 

  51. Senani, R., Amit Kumar, B.: Linearly tunable Wien Bridge oscillator realized with operational transconductance amplifiers. Electron. Lett. 25, 19–21(1989)

    Article  Google Scholar 

  52. Senani, R.: New electronically tunable OTA-C sinusoidal oscillator. Electron. Lett. 25, 286–287 (1989)

    Article  Google Scholar 

  53. Senani, R., Tripathi, M.P., Bhaskar, D.R., Banerjee, A.K.: Systematic generation of OTA-C sinusoidal oscillators. Electron. Lett. 26, 1457–1459 (1990)

    Article  Google Scholar 

  54. Linares-Barranco, B., Rodriguez-Vazquez, A., Sanchez-Sinencio, E., Huertas, J.L.: CMOS OTA-C high-frequency sinusoidal oscillators. IEEE J. Solid-State Circuits 26, 160–165 (1991)

    Article  Google Scholar 

  55. Odame, K.M., Hasler, P.: Theory and design of OTA-C oscillators with native amplitude limiting. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 40–50 (2009)

    Article  MathSciNet  Google Scholar 

  56. Galan, J., Carvajal, R.G., Torralba, A., Munoz, F., Ramirez-Angulo, J.: A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range. IEEE Trans. Circuits Syst. I Regul. Pap. 52, 283–291 (2005)

    Article  Google Scholar 

  57. Linares-Barranco, B., Serrano-Gotarredona, T., Ramos-Martos, J., Ceballos-Caceres, J., Mora, J.M., Linares-Barranco, A.: A precise 90° quadrature OTA-C oscillator tunable in the 50–130-MHz range. IEEE Trans. Circuits Syst. I Regul. Pap. 51, 649–663 (2004)

    Article  Google Scholar 

  58. Ahmed, R.F., Awad, I.A., Soliman, A.N.: A transformation method from voltage-mode Op-Amp RC circuits to current-mode Gm-C circuits. Circuits Syst. Signal Process. 25, 609–626 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. Bhattacharyya, B.B., Swamy, M.N.S.: Network transposition and its application in synthesis. IEEE Trans. Circuit Theory CT-18, 394–397 (1971)

    Article  Google Scholar 

  60. Director, S.W., Rohrer, R.A.: The generalized adjoint network and network sensitivities. IEEE Trans. Circuit Theory CT-16, 318–323 (1969)

    Article  Google Scholar 

  61. Swamy, M.N.S., Bhushan, C., Bhattacharyya, B.B.: Generalized dual transposition and its applications. J. Franklin Inst. 301, 465–476 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  62. Mahattnakul, J., Toumazou, C.: Current-mode versus voltage-mode Gm-C biquad filters: what the theory says. IEEE Trans. Circuits Syst. II 45, 173–186 (1998)

    Article  Google Scholar 

  63. Ramirez-Angulo, J., Sanchez-Sinencio, E.: Active compensation of operational transconductance amplifier filters using partial positive feedback. IEEE J. Solid-State Circuits SC-25, 1024–1028 (1990)

    Article  Google Scholar 

  64. Ananda Mohan, P.V.: Current-mode VLSI Analog Filters. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

Further Reading

  • Deliyannis, T., Sun, Y., Fidler, J.K.: Continuous-Time Active Filter Design. CRC Press, Florida (1999)

    Google Scholar 

  • Kallam, P., Sanchez-Sinencio, E., Karsilayan, A.I.: An enhanced adaptive Q-tuning scheme for a 100-MHz fully symmetric OTA-based bandpass filter. IEEE J. Solid-State Circuits 38(4), 585–593 (2003)

    Article  Google Scholar 

  • Toumazou, C., Lidgey, J., Haigh, D. (eds.): Analogue IC Design: The Current-Mode Approach. IEE, London (1990)

    Google Scholar 

  • Swamy, M.N.S., Raut, R.: Realization of gm-C current-mode filters from associated (gm-C) voltage mode filters. Proceedings of the 45th Midwest Symposium on Ciruits and Systems, Tulsa, OK, Part II, 625–628 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Ananda Mohan .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohan, P.V.A. (2013). OTA-C Filters. In: VLSI Analog Filters. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8358-0_3

Download citation

Publish with us

Policies and ethics