Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 300))

Abstract

Selberg identified the “parity” barrier that sieves alone cannot distinguish between integers having an even or odd number of factors. We give here a short and self-contained demonstration of parity breaking using bilinear forms, modeled on the twin primes conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jing Run Chen. On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica, 16:157–176, 1973.

    Google Scholar 

  2. John Friedlander and Henryk Iwaniec. The polynomial X 2 + Y 4 captures its primes. Ann. of Math. (2), 148(3):945–1040, 1998.

    Google Scholar 

  3. S.W. Graham and G. Kolesnik. Van der Corput’s Method of Exponential Sums, volume 126. London Math. Soc., Lecture Notes, 1991.

    Book  Google Scholar 

  4. D. R. Heath-Brown. The Pjateckiĭ-S̆apiro prime number theorem. J Number Theory, 16:242–266, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. R. Heath-Brown. Primes represented by x 3 + 2y 3. Acta Math., 186(1):1–84, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Leitmann. The distribution of prime numbers in sequences of the form [f(n)]. Proc. London Math. Soc., 35(3):448–462, 1977.

    Article  MathSciNet  Google Scholar 

  7. I. I. Pjateckiĭ-S̆apiro. On the distribution of prime numbers in sequences of the form [f(n)]. Mat. Sb., 33:559–566, 1953.

    Google Scholar 

  8. Robert-C. Vaughan. Sommes trigonométriques sur les nombres premiers. C. R. Acad. Sci. Paris Sér. A-B, 285(16):A981–A983, 1977.

    Google Scholar 

  9. J. G. van der Corput. Zahlentheoretische Abschätzungen. Math. Ann., 84(1–2):53–79, 1921.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. G. van der Corput. Verschärfung der Abschätzung beim Teilerproblem. Math. Ann., 87(1–2):39–65, 1922.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. M. Vinogradov. Representation of an odd number as a sum of three primes. Dokl. Akad. Nauk SSSR, 15:291–294, 1937.

    Google Scholar 

  12. H. Weyl. Zur Abschätzung von ζ(1 + it). Math. Z., 10:88–101, 1921.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Peter Sarnak for suggesting this problem, and generously lending of his time. Thanks also to Dorian Goldfeld and Patrick Gallagher for enlightening conversations, and to Tim Browning, Gautam Chinta, Steven J. Miller, and the referee for corrections to an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex V. Kontorovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kontorovich, A.V. (2012). A Pseudo Twin Primes Theorem. In: Bump, D., Friedberg, S., Goldfeld, D. (eds) Multiple Dirichlet Series, L-functions and Automorphic Forms. Progress in Mathematics, vol 300. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8334-4_12

Download citation

Publish with us

Policies and ethics