Skip to main content

Cauchy–Pompeiu-Type Formulas for \(\bar{\partial }\) on Affine Algebraic Riemann Surfaces and Some Applications

  • Chapter
  • First Online:
Perspectives in Analysis, Geometry, and Topology

Part of the book series: Progress in Mathematics ((PM,volume 296))

Abstract

We present explicit solution formulas \(f =\hat{ R}\varphi \)and u=Rλffor the equations \(\bar{\partial }f = \varphi \)and \((\partial+ \lambda \mathrm{d}{z}_{1})u = f -{\mathcal{H}}_{\lambda }f\)on an affine algebraic curve V2. Here \({\mathcal{H}}_{\lambda }f\)denotes the projection of \(f \in {\tilde{W}}_{1,0}^{1,\tilde{p}}(V )\)to the subspace of pseudoholomorphic (1,0)-forms on V: \(\bar{\partial }{\mathcal{H}}_{\lambda }f =\bar{ \lambda }\mathrm{d}\bar{{z}}_{1} \wedge {\mathcal{H}}_{\lambda }f\). These formulas can be interpreted as explicit versions and refinements of the Hodge–Riemann decomposition on Riemann surfaces. The main application consists in the construction of the Faddeev–Green function for \(\bar{\partial }(\partial+ \lambda \mathrm{d}{z}_{1})\)on Vas the kernel of the operator \({R}_{\lambda } \circ \hat{ R}\). This Faddeev–Green function is the main tool for the solution of the inverse conductivity problem on bordered Riemann surfaces XV, that is, for the reconstruction of the conductivity function σ in the equation ddc U)=0 from the Dirichlet-to-Neumann mapping U|x bX ↦σdc U{|} bX . The case V=was treated by R. Novikov [N1]. In Sect. 4we give a correction to the paper [HM], in which the case of a general algebraic curve Vwas first considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beals R., Coifman R., Multidimensional inverse scattering and nonlinear partial differential equations, Proc. Symp. Pure Math. 43(1985), AMS, Providence, RI, 45–70.

    Google Scholar 

  2. Beals R., Coifman R., The spectral problem for the Davey–Stewartson and Ishimori hierarchies. In: “Nonlinear Evolution Equations: Integrability and Spectral Methods,” Proc. Workshop, Como, Italy 1988, Proc. Nonlinear Sci., 15–23, 1990.

    Google Scholar 

  3. Faddeev L. D., Increasing solutions of the Schrödinger equation, Dokl. Akad. Nauk SSSR 165(1965), 514–517 (in Russian); Sov. Phys. Dokl. 10(1966), 1033–1035.

    Google Scholar 

  4. Faddeev L. D., The inverse problem in the quantum theory of scattering, II, Current Problems in Math., 3, 93–180, VINITI, Moscow, 1974 (in Russian); J. Soviet Math. 5(1976), 334–396.

    Google Scholar 

  5. Grinevich P. G., Novikov S. P., Two-dimensional “inverse scattering problem” for negative energies and generalized analytic functions, Funct. Anal. Appl. 22(1988), 19–27.

    Article  MathSciNet  MATH  Google Scholar 

  6. Henkin G. M., Uniform estimate for a solution of the \(\bar{\partial }\)-equation in Weil domain, Uspekhi Mat. Nauk 26(1971), 211–212.

    Google Scholar 

  7. Henkin G. M., Michel V., Inverse conductivity problem on Riemann surfaces, J. Geom. Anal. 18(4) (2008) 1033–1052.

    Article  MathSciNet  MATH  Google Scholar 

  8. Henkin G. M., Novikov R. G., On the reconstruction of conductivity of bordered two-dimensional surface in 3from electrical currents measurements on its boundary, J. Geom. Anal. 21(2011), 543–887

    Google Scholar 

  9. Henkin G. M., Polyakov P. L., Homotopy formulas for the \(\bar{\partial }\)-operator on \(\mathbb{C}{P}^{n}\)and the Radon–Penrose transform, Math. USSR Izvestiya 28(1987), 555–587.

    Google Scholar 

  10. Hodge W., The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1952.

    MATH  Google Scholar 

  11. Novikov R., Multidimensional inverse spectral problem for the equation − Δψ + (v − Eu)ψ = 0, Funkt. Anal. i Pril. 22(1988), 11–22 (in Russian); Funct. Anal Appl. 22(1988), 263–278.

    Google Scholar 

  12. Novikov R., The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator, J. Funct. Anal. 103(1992), 409–463.

    Article  MathSciNet  MATH  Google Scholar 

  13. Nachman A., Global uniqueness for a two-dimensional inverse boundary problem, Ann. Math. 143(1996), 71–96.

    Article  MathSciNet  MATH  Google Scholar 

  14. Pompeiu D., Sur la représentation des fonctions analytiques par des intégrales définies, C. R. Acad. Sc. Paris 149(1909), 1355–1357.

    MATH  Google Scholar 

  15. Pompeiu D., Sur une classe de fonctions d’une variable complexe et sur certaines équations intégrales, Rend. del. Circolo Matem. di Palermo 35(1913), 277–281.

    Article  Google Scholar 

  16. Polyakov P., The Cauchy–Weil formula for differential forms, Mat. Sb. 85(1971), 388–402.

    MathSciNet  MATH  Google Scholar 

  17. Serre J.-P., Un théorème de dualité, Comm. Math. Helv. 29(1955), 9–26.

    Article  MATH  Google Scholar 

  18. Vekua I. N., Generalized analytic functions, Pergamon Press; Addison-Wesley, 1962.

    Google Scholar 

  19. Weil A., Variétés kähleriennes, Hermann, Paris, 1957.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadi M. Henkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Henkin, G.M. (2012). Cauchy–Pompeiu-Type Formulas for \(\bar{\partial }\) on Affine Algebraic Riemann Surfaces and Some Applications. In: Itenberg, I., Jöricke, B., Passare, M. (eds) Perspectives in Analysis, Geometry, and Topology. Progress in Mathematics, vol 296. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8277-4_10

Download citation

Publish with us

Policies and ethics