Skip to main content

Mathematics and physics applications in sociodynamics simulation: the case of opinion formation and diffusion

  • Chapter
  • First Online:
Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences

Summary

In this chapter, we briefly review some opinion dynamics models starting from the classical Schelling model and other agent-based modelling examples. We consider both discrete and continuous models and we briefly describe different approaches: discrete dynamical systems and agent-based models, partial differential equations based models, kinetic framework. We also synthesized some comparisons between different methods with the main references in order to further analysis and remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science from the Bottom Up. MIT Press, Cambridge, MA (1996)

    Google Scholar 

  2. Axelrod, R.: The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton University Press, Princeton, NJ (1997)

    Google Scholar 

  3. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.: Effective leadership and decision making in animal groups on the move. Nature, 433, 513–516 (2005)

    Article  Google Scholar 

  4. Cucker, F., Mordecki, E.: Flocking in noisy environments. J. Math. Pures Appl., 89, 278–296 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control, 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  6. Flierl, G., Grnbaum, D., Levin, D., Olson, D.: From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol., 196, 397–454 (1999)

    Article  Google Scholar 

  7. Liu, Y., Passino, K.: Stable social foraging swarms in a noisy environment. IEEE Trans. Automatic Contrl., 49, 30–44 (2004)

    Article  MathSciNet  Google Scholar 

  8. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math., 65, 152–174 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68, 1601–1623 (2006)

    Article  MathSciNet  Google Scholar 

  10. Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts. Eur. Phys. J. Special Topics, 157, 93–109 (2008)

    Article  Google Scholar 

  11. Shen, J.: Cucker-smale flocking under hierarchical leadership. SIAM J. Appl. Math., 68, 694–719 (2008)

    Article  MATH  Google Scholar 

  12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Contrl., 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  13. Biham, O., Malcai, O., Richmond, P., Solomon S.: Theoretical analysis and simulations of the generalized Lotka-Volterra model. Phys. Rev. E, 66, 031102 (2002)

    Article  MathSciNet  Google Scholar 

  14. Solomon, S., Richmond, P.: Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf. Eur. Phys. J. B, 27, 257–262 (2002)

    Google Scholar 

  15. Dragulescu, A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B, 17, 723–729 (2000)

    Article  Google Scholar 

  16. Chakraborti, A., Chakrabarti, B.K.: Statistical Mechanics of money: effects of saving propensity. Eur. Phys. J. B, 17, 167–170 (2000)

    Article  Google Scholar 

  17. Chakraborti, A.: Distributions of money in models of market economy. Int. J. Modern Phys. C, 13, 1315–1321 (2002)

    Article  Google Scholar 

  18. Galam, S., Gefen, Y., Shapir, Y.: Sociophysics:a new approach of sociological collective behavior. J. Math. Sociol., 9, 1–13 (1982)

    MATH  Google Scholar 

  19. Stauffer, D., de Oliveira, P.M.C.: Persistence of opinion in the Sznajd consensus model: computer simulation. Eur. Phys. J. B, 30, 587–592 (2002)

    Article  Google Scholar 

  20. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C, 11, 1157–1165 (2000)

    Article  Google Scholar 

  21. Weisbuch, G., Deffuant, G., Amblard, F., Nadal, J.P.: Meet, discuss, and segregate. Complexity, 7, 55–63 (2002)

    Article  Google Scholar 

  22. Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math., 2, 197–227 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cucker, F., Smale, S., Zhou, D.X.: Modeling language evolution. Found. Comput. Math., 4, 315–343 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Majorana, E., 1942, Scientia Feb–Mar, 58

    Google Scholar 

  25. Mantegna, R.N.: Presentation of the English translation of Ettore Majoranas paper: “The value of statistical laws in physics and social science”. Quantitative Finance, 5, 133 (2005)

    Article  MathSciNet  Google Scholar 

  26. Weidlich, W.: Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences. Harwood Academic, Amsterdam (2000)

    MATH  Google Scholar 

  27. Schelling, T. C.: Dynamic models of segregation. J. Math. Sociol., 1, 143–186 (1971)

    Google Scholar 

  28. Sakoda, J.M.: The checkerboard model of social interaction. J. Math. Sociol., 1, 119–132 (1971)

    Google Scholar 

  29. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschr f. Physik, 31, 253–258 (1925)

    Article  Google Scholar 

  30. Brush, S.G., History of the Lenz-Ising Model. Rev. Modern Phys.,39, 883-893 (1967)

    Article  Google Scholar 

  31. McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge Massachusetts (1973)

    MATH  Google Scholar 

  32. Godreche, C., Luck, J.M.: Metastability in zero-temperature dynamics: Statistics of attractors. J. Phys. Cond. Matt., 17, S2573–S2590 (2005)

    Article  Google Scholar 

  33. Galam, S.: Sociophysics: a personal testimony. Physica A, 336, 49–55 (2004)

    Article  MathSciNet  Google Scholar 

  34. Arnopoulos, P.: Sociophysics: Cosmos and Chaos in Nature and Culture. Nova Science Publishers, New York (2005)

    Google Scholar 

  35. Schweitzer, F.: Browning Agents and Active Particles. On the emergence of complex behavior in the natural and social sciences. Springer, Berlin (2003)

    Google Scholar 

  36. Schweitzer, F. (ed): Modeling Complexity in Economic and Social Systems, World Scientific. River Edge, NJ (2002)

    Book  Google Scholar 

  37. Chakrabarti, B.K., Chakraborti, A., Chatterjee, A. (eds): Econophysics and Sociophysics. Wiley, Berlin (2006)

    Book  Google Scholar 

  38. Meyers, R.A. (ed): Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

    Book  Google Scholar 

  39. Vinkovic, D., Kirman, A.: A physical analogue of the Schelling model. PNAS, 103(51), 19261–19265 (2006)

    Article  Google Scholar 

  40. DallAsta, L., Castellano, C., Marsili, M.: Statistical physics of the Schelling model of segregation. eprint arXiv:0707.1681 (2007)

    Google Scholar 

  41. Fossett, M.: Ethnic preferences, social distance dynamics, and residential segregation: theoretical explorations using simulation analysis. J. Math. Sociol., 30, 185–274 (2006)

    Article  Google Scholar 

  42. Clarkab, W.A.V., Fossett, M.: Understanding the social context of the Schelling segregation model. PNAS, 5(11), 4109–4114 (2008)

    Article  Google Scholar 

  43. Stauffer, D., Solomon, S.: Ising, Schelling and self-organising segregation. Eur. Phys. J. B, 57, 473–479 (2007)

    Google Scholar 

  44. Friedkin, N.E., Johnsen, E.C.: Social Influence Networks and Opinion Change. Adv. Group Proces., 16, 1–29 (1999)

    Google Scholar 

  45. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif. Soc Social Simul., 5(2002)

    Google Scholar 

  46. Sznajd-Weron, K.: Sznajd model and its applications. Acta Phys. Polonica B, 36, 1001–1011 (2005)

    Google Scholar 

  47. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Modern Phys., 81, 591–646 (2009)

    Article  Google Scholar 

  48. Stauffer, D., Sousa, A.O., De Oliviera, M.: Generalization to square lattice of Sznajd sociophysics model. Int. J. Mod. Phys. C, 11, 1239–1245 (2000)

    Article  Google Scholar 

  49. Wu, F.Y.: The Potts model. Rev. Mod. Phys., 54, 235–268 (1982)

    Article  Google Scholar 

  50. Ochrombel, R.: Simulation of Sznajd sociophysics model with convincing single opinions. Int. J. Mod. Phys. C, 12, 1091 (2001)

    Article  Google Scholar 

  51. Ben-Naim, E., Frachebourg, L., Krapivsky, P.L.: Coarsening and persistence in the voter model. Phys. Rev. E, 53, 3078 (1996)

    Article  Google Scholar 

  52. Slanina, F., Lavicka, H.: Analytical results for the Sznajd model of opinion formation. Eur. Phys. J. B, 35, 279–288 (2003)

    Article  Google Scholar 

  53. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Compl. Syst., 3, 87–98 (2000)

    Article  Google Scholar 

  54. Ben-Naim, E., Krapivsky, P.L., Redner, S.: Bifurcations and patterns in compromise processes. Physica D, 183, 190 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Toscani, G.: Kinetic models of opinion formation. Comm. Math. Sci., 4, 481–496 (2006)

    MATH  MathSciNet  Google Scholar 

  56. McNamara, S., Young, W.R.: Kinetics of a onedimensional granular medium in the quasielastic limit. Phys. Fluids A, 5, 34 (1993)

    Article  MathSciNet  Google Scholar 

  57. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Springer Series in Applied Mathematical Sciences, Vol. 106 Springer-Verlag, New York (1994)

    Google Scholar 

  58. Boudin, L., Monaco, R., Salvarani, F.: A Kinetic Model for multidimensional opinion formation. To appear in Phys. Rev. E (2009)

    Google Scholar 

  59. Holyst, J.A., Kacperski, K., Schweitzer, F.: Social impact models of opinion dynamics. Ann. Rev. Comp. Phys., 9, 253–273 (2001)

    Article  Google Scholar 

  60. Bellomo N.: Modeling Complex Living Systems. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  61. Aletti, G., Naldi, G., Toscani, G.: First-order continuous models of opinion formation. SIAM J. Appl. Math., 67, 837–853 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Aletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aletti, G., Naimzada, A.K., Naldi, G. (2010). Mathematics and physics applications in sociodynamics simulation: the case of opinion formation and diffusion. In: Naldi, G., Pareschi, L., Toscani, G. (eds) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4946-3_8

Download citation

Publish with us

Policies and ethics