Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Classical inequalities used in information theory such as those of de Bruijn, Fisher, Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to unimodular Lie groups. The extension of core information-theoretic inequalities defined in the setting of Euclidean space to this broad class of Lie groups is potentially relevant to a number of problems relating to information-gathering in mobile robotics, satellite attitude control, tomographic image reconstruction, biomolecular structure determination, and quantum information theory. In this chapter, several definitions are extended from the Euclidean setting to that of Lie groups (including entropy and the Fisher information matrix), and inequalities analogous to those in classical information theory are derived and stated in the form of more than a dozen theorems. In all such inequalities, addition of random variables is replaced with the group product, and the appropriate generalization of convolution of probability densities is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Nagaoka, H., Methods of Information Geometry, Translations of Mathematical Monographs Vol. 191, American Mathematical Society, Providence, RI, 2000.

    Google Scholar 

  2. Avez, A., “Entropy of groups of finite type,” C.R. Hebdomadaires Seances Acad. Sci. A, 275, pp. 13–63, 1972.

    Google Scholar 

  3. Bakry, D., Concordet, D., Ledoux, M., “Optimal heat kernel bounds under logarithmic Sobolev inequalities,” ESAIM: Probability and Statistics, 1, pp. 391–407, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  4. Barron, A.R., “Entropy and the central limit theorem,” Ann. Probab., 14, pp. 336–342, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckner, W., “Sharp inequalities and geometric manifolds,” J. Fourier Anal. Applic. 3, pp. 825–836, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. Beckner, W., “Geometric inequalities in Fourier analysis,” in Essays on Fourier Analysis in Honor of Elias M. Stein, pp. 36–68 Princeton University Press, Princeton, NJ, 1995.

    Google Scholar 

  7. Blachman, N.M., “The convolution inequality for entropy powers,” IEEE Trans. Inform. Theory, 11(2), pp. 267–271, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, L.D., “A proof of the Central Limit Theorem motivated by the Cram´er–Rao inequality,” in Statistics and Probability: Essays in Honour of C.R. Rao, G. Kallianpur, P.R. Krishnaiah, and J.K. Ghosh, eds., pp. 141–148, North-Holland, New York, 1982.

    Google Scholar 

  9. Carlen, E.A., “Superadditivity of Fisher’s information and logarithmic Sobolev inequalities,” J. Funct. Anal., 101, pp. 194–211, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chirikjian, G.S., Stochastic Models, Information Theory, and Lie groups: Vol. 1, Birk¨auser, Boston, 2009.

    Google Scholar 

  11. Chirikjian, G.S., “Information-theoretic inequalities on unimodular Lie groups,” J. Geom. Mechan., 2(2), pp. 119–158, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cover, T.M., Thomas, J.A., Elements of Information Theory, 2nd ed. Wiley-Interscience, Hoboken, NJ, 2006.

    Google Scholar 

  13. Csisz´ar, I., “I-Divergence geometry of probability distributions and minimization problems,” Ann. Probab., 3(1), pp. 146–158, 1975.

    Google Scholar 

  14. Dembo, A., “Information inequalities and concentration of measure,” Ann. Prob., 25, pp. 527–539, 1997.

    MathSciNet  Google Scholar 

  15. Dembo, A., Cover, T.M., Thomas, J.A., “Information theoretic inequalities,” IEEE Trans. Inform. Theory., 37(6), pp. 1501–1518, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gibilisco, P., Isola, T., “Fisher information and Stam inequality of a finite group,” Bull. London Math. Soc., 40, pp. 855–862, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gibilisco, P., Imparato, D., Isola, T., “Stam inequality on Zn,” Statist. Probab. Lett., 78, pp. 1851–1856, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  18. Grenander, U., Probabilities on Algebraic Structures, Dover Published, New York, 2008. (originally publicated by John Wiley and Sons 1963).

    Google Scholar 

  19. Gross, L., “Logarithmic Sobolev inequalities,” Am. J. Math., 97, pp. 1061–1083, 1975.

    Article  Google Scholar 

  20. Gross, L., “Logarithmic Sobolev inequalities on Lie groups,” Illinois J. Math., 36(3), pp. 447–490, 1992.

    MathSciNet  MATH  Google Scholar 

  21. Heyer, H., Probability Measures on Locally Compact Groups, Springer-Verlag, New York, 1977.

    Google Scholar 

  22. Johnson, O., Suhov, Y., “Entropy and convergence on compact groups,” J. Theoret. Probab., 13(3), pp. 843–857, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson, O., Information Theory and the Central Limit Theorem, Imperial College Press, London, 2004.

    Google Scholar 

  24. Ledoux, M., Concentration of Measure and Logarithmic Sobolev Inequalities, Lecture Notes in Mathematics Vol. 1709, Springer, Berlin, 1999.

    Google Scholar 

  25. Ledoux, M., The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs Vol. 89, American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  26. Lieb, E.H., Loss, M., Analysis, 2nd ed., American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  27. Linnik, Y.V., “An information-theoretic proof of the Central Limit Theorem with the Lindeberg condition,” Theory Probab. Applic., 4(3), pp. 288–299, 1959.

    Article  MathSciNet  Google Scholar 

  28. Maksimov, V.M., “Necessary and sufficient statistics for the family of shifts of probability distributions on continuous bicompact groups,” Theory Probab. Applic., 12(2), pp. 267–280, 1967.

    Article  Google Scholar 

  29. Otto, F., Villani, C., “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,” J. Funct. Anal., 173, pp. 361–400, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  30. Roy, K.K., “Exponential families of densities on an analytic group and sufficient statistics,” Sankhya: Indian J. Statist. A, 37(1), pp. 82–92, 1975.

    MATH  Google Scholar 

  31. Stam, A.J., “Some inequalities satisfied by the quantities of information of Fisher and Shannon,” Inform. Control, 2(2), pp. 101–112, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  32. Sugiura, M., Unitary Representations and Harmonic Analysis, 2nd ed., Elsevier Science Publisher, Amsterdam, 1990.

    Google Scholar 

  33. Talagrand, M., “New concentration inequalities in product spaces,” Invent. Math., 126, pp. 505–563, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Chirikjian, G.S., “Nonparametric second-order theory of error propagation on the Euclidean group,” Int. J. Robot. Res., 27(1112), pp. 1258–1273, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chirikjian, G.S. (2012). Information Theory on Lie Groups. In: Stochastic Models, Information Theory, and Lie Groups, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4944-9_10

Download citation

Publish with us

Policies and ethics