Skip to main content

The Issue of the Beginning in Quantum Gravity

  • Chapter
  • First Online:
Einstein and the Changing Worldviews of Physics

Part of the book series: Einstein Studies ((EINSTEIN,volume 12))

Abstract

Treatises on Time, the Beginning and the End date back at least twenty-five centuries. Does the flow of time have an objective, universal meaning beyond human perception? Or, is it fundamentally only a convenient, and perhaps merely psychological, notion? Are its properties tied to the specifics of observers such as their location and state of motion? Did the physical universe have a finite beginning, or has it been evolving eternally? Leading thinkers across cultures meditated on these issues and arrived at definite but strikingly different answers. For example, in the sixth century B.C.E., Gautama Buddha taught that ‘a period of time’ is a purely conventional notion; time and space exist only in relation to our experience, and the universe is eternal. In the Christian thought, however, the universe had a finite beginning, and there was debate as to whether time represents ‘movement’ of bodies or whether it flows only in the soul. In the fourth century C.E., St. Augustine held that time itself started with the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashtekar, A. 1986. New variables for classical and quantum gravity. Phys. Rev. Lett. 57: 2244–2247.

    Article  MathSciNet  Google Scholar 

  • ——. 1987. New Hamiltonian formulation of general relativity. Phys. Rev. D36: 1587–1602.

    MathSciNet  Google Scholar 

  • ——. 1991. Lectures on non-perturbative canonical gravity. Notes prepared in collaboration with R. S. Tate, chap. 10. Singapore:World Scientific.

    Google Scholar 

  • ——. 2005. Gravity and the quantum. New J. Phys. 7: 198; arXiv:gr-qc/0410054.

    Google Scholar 

  • Ashtekar, A., Bojowald, M. and Lewandowski, J. 2003. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7: 233–268; gr-qc/0304074.

    Google Scholar 

  • Ashtekar, A., Bojowald, M. andWillis, J. 2004. Corrections to Friedmann equations induced by quantum geometry, IGPG preprint.

    Google Scholar 

  • Ashtekar, A. and Lewandowski, J. 1994. Representation theory of analytic holonomy algebras, in Knots and Quantum Gravity, ed J. Baez. Oxford: Oxford University Press.

    Google Scholar 

  • ——. 1995a. Differential geometry on the space of connections using projective techniques. J. Geom. Phys. 17: 191–230.

    Article  MATH  MathSciNet  Google Scholar 

  • ——. 1995b. Projective techniques and functional integration. J. Math. Phys. 36: 2170–2191.

    Article  MATH  MathSciNet  Google Scholar 

  • ——. 2004. Background independent quantum gravity: A status report. Class. Quant. Grav. 21: R53–R152; arXiv:gr-qc/0404018.

    Google Scholar 

  • Ashtekar, A., Pawlowski, T. and Singh, P. 2006a. Quantum nature of the big bang. Phys. Rev. Lett. 96: 141301; arXiv:gr-qc/0602086.

    Google Scholar 

  • ——. 2006b. Quantum nature of the big bang: An analytical and numerical investigation I; arXiv:gr-qc/0604013.

    Google Scholar 

  • ——. 2006c. Quantum nature of the big bang: Improved dynamics; arXiv: gr-qc/0607039.

    Google Scholar 

  • Ashtekar, A. and Singh, P. 2011. Loop quantum cosmology: A Status Report. Class. Quantum Grav. arXiv:1108.0893 (in preparation).

    Google Scholar 

  • Baez, J. C. 1994. Generalized measures in gauge theory. Lett. Math. Phys. 31: 213–223.

    Article  MATH  MathSciNet  Google Scholar 

  • ——. 1996. Spin networks in non-perturbative quantum gravity, in The Interface of Knots and Physics, ed. Kauffman L. Providence: American Mathematical Society, pp. 167–203.

    Google Scholar 

  • Bojowald, M. 2001. Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86: 5227–5230; arXiv:gr-qc/0102069.

    Google Scholar 

  • ——. 2002. Isotropic loop quantum cosmology. Class. Quant. Grav. 19: 2717–2741; arXiv:gr-qc/0202077.

    Google Scholar 

  • ——. 2005. Loop quantum cosmology. Liv. Rev. Rel. 8: 11; arXiv:gr-qc/0601085. ojowald, M., Hernandez, H. H. and Morales-Tecotl, H. A. 2001. Perturbative degrees of freedom in loop quantum gravity: Anisotropies. Class. Quant. Grav. 18: L117–L127; arXiv:gr-qc/0511058.

    Google Scholar 

  • Fleishchack, C. 2004. Representations of the Weyl algebra in quantum geometry; arXiv:math-ph/0407006.

    Google Scholar 

  • Gasperini, M. and Veneziano, G. 2003. The pre-big bang scenario in string cosmology. Phys. Rep. 373: 1; arXiv:hep-th/0207130.

    Google Scholar 

  • Khoury, J., Ovrut, B. A., Steinhardt, P. J. and Turok, N. 2001. The ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D64, 123522, hep-th/0103239.

    Google Scholar 

  • Khoury, J., Ovrut, B., Seiberg, N., Steinhardt, P. J. and Turok, N. 2002. From big crunch to big bang. Phys. Rev. D65, 086007, hep-th/0108187.

    Google Scholar 

  • Lauscher, O. and Reuter, M. 2005. Asymptotic safety in quantum Einstein gravity: nonperturbative renormalizability and fractal spacetime structure; arXiv: hep-th/0511260.

    Google Scholar 

  • Lewandowski, J., Okolow, A., Sahlmann, H. and Thiemann, T. 2005. Uniqueness of diffeomorphism invariant states on holonomy flux algebras; arXiv: gr-qc/0504147.

    Google Scholar 

  • Marolf, D. 1995a. Refined algebraic quantization: Systems with a single constraint; arXives:gr-qc/9508015.

    Google Scholar 

  • ——. 1995b. Quantum observables and recollapsing dynamics. Class. Quant. Grav. 12: 1199–1220.

    Google Scholar 

  • Marolf, D. and Mour˜ao, J. 1995. On the support of the Ashtekar-Lewandowski measure. Commun. Math. Phys. 170: 583–606.

    Google Scholar 

  • Percacci, R. and Perini, D. 2003. Asymptotic safety of gravity coupled to matter. Phys. Rev. D68: 044018.

    Google Scholar 

  • Rovelli, C. 2004. Quantum Gravity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rovelli, C. and Smolin, L. 1995. Spin networks and quantum gravity. Phys. Rev. D52: 5743–5759.

    MathSciNet  Google Scholar 

  • Thiemann, T. 2003. The Phoenix project: Master constraint program for loop quantum gravity; arXiv:gr-qc/0305080.

    Google Scholar 

  • ——. 2007. Introduction to Modern Canonical Quantum General Relativity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Willis, J. 2004. On the low energy ramifications and a mathematical extension of loop quantum gravity. Ph.D. dissertation, The Pennsylvania State University, University Park, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Center for Einstein Studies

About this chapter

Cite this chapter

Ashtekar, A. (2012). The Issue of the Beginning in Quantum Gravity. In: Lehner, C., Renn, J., Schemmel, M. (eds) Einstein and the Changing Worldviews of Physics. Einstein Studies, vol 12. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4940-1_18

Download citation

Publish with us

Policies and ethics