Skip to main content

Properties of Lifetime Estimators Based on Warranty Data Consisting only of Failures

  • Chapter
  • First Online:
Advances in Degradation Modeling

Abstract

Nowadays, many consumer durable goods, such as, automobiles, appliances, and photocopiers etc., are sold with manufacturer’s warranty to insure product quality and reliability. Warranty claims contain a large amount of useful information about reliability of the products, such as, failure times, usage, and failure modes etc. For engineering purposes, usage is more relevant, and hence, modeling usage accumulation is of great interest in reliability analysis using warranty data. Such models are needed to manufacturers to evaluate reliability, predict warranty costs, and to assess design modification and customer satisfaction. Usually, warranty data consists of only failure information, and non-failure information is not obtainable which makes the reliability analysis difficult. The sales data is also important for reliability analysis as it contains time-in-service in calendar timescale for each non-failed product during the warranty plan. This chapter discusses maximum likelihood estimation of lifetime parameters using warranty data along with sales data and examines the precision of the estimators by the asymptotic variances obtained from Fisher Information Matrix. The practical consequence of this finding is that the proposed method produces estimators of the lifetime parameters with good precision for large sales amount.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M. and Stegun, I. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9 edition. New York: Dover.

    MATH  Google Scholar 

  2. Davis, T. (1999). A simple method for estimating the joint failure time and failure mileage distribution from automobile warranty data, Ford Technical Journal, 2.

    Google Scholar 

  3. Hu, S.J., Lawless, J.F., and Suzuki, K. (1998). Non-parametric estimation of a lifetime distribution when censoring times are missing, Technometrics, 40, 3–13.

    Article  MATH  MathSciNet  Google Scholar 

  4. Kalbfleisch, J.D. and Lawless, J.F. (1996). Statistical analysis of warranty claims data, In: Product Warranty Handbook, W.R. Blischke and D.N.P. Murthy (eds.), pp. 231–259, New York: Marcel Dekker.

    Google Scholar 

  5. Kalbfleisch, J.D., Lawless, J.F., and Robinson, J.A., (1991). Methods for the analysis and prediction of warranty claims, Technometrics, 33, 273–285.

    Article  MATH  Google Scholar 

  6. Karim, M.R., Yamamoto, W., and Suzuki, K. (2001). Statistical analysis of marginal count failure data, Lifetime Data Analysis, 7, 173–186.

    Article  MATH  MathSciNet  Google Scholar 

  7. Lawless, J.F. (1998). Statistical analysis of product warranty data, International Statistical Review, 66, 41–60.

    Article  MATH  Google Scholar 

  8. Lawless, J.F., Hu, X.J., and Cao, J. (1995). Methods for the estimation of failure distributions and rates from auto-mobile warranty data, Lifetime Data Analysis, 1, 227–240.

    Article  MATH  Google Scholar 

  9. Philips, M.J. and Sweeting, T.J. (2001). Estimation from censored data with incomplete information, Lifetime Data Analysis, 7, 279–288.

    Article  MathSciNet  Google Scholar 

  10. Rai, B. and Singh, N. (2006). Customer-rush near warranty expiration limit and nonparametric hazard rate estimation from known mileage accumulation rates, IEEE Transactions on Reliability, 55, 480–489.

    Article  Google Scholar 

  11. Robinson, J.A. and McDonald, G.C. (1991). Issues related to field reliability and warranty data, In: Data Quality Control: Theory and Pragmatics, G.E. Liepins and V.R.R. Uppuluri (eds.), New York: Marcel Dekker.

    Google Scholar 

  12. Suzuki, K. (1985a). Nonparametric estimation of lifetime distribution from a record of failures and follow-ups, Journal of the American Statistical Association, 80, 68–72.

    Article  MATH  MathSciNet  Google Scholar 

  13. Suzuki, K. (1985b). Estimation of lifetime parameters from incomplete field data, Technometrics, 27, 263–271.

    Article  MATH  MathSciNet  Google Scholar 

  14. Suzuki, K., Karim, M.R., and Wang, L. (2001). Statistical analysis of reliability warranty data, In: Handbook of Statistics: Advances in Reliability, 20, N. Balakrishnan and C.R. Rao (eds.), pp. 585–609, Amsterdam: Elsevier Science.

    Google Scholar 

  15. Suzuki, K. (2004). Analysis of reliability lifetime data, (in Japanese), Hinshitsu (Journal of Japanese Society for Quality Control), 34, 157–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Appendix

We know that integration and differentiation of a function are interchangeable provided that they exist and the function is continuous. As \( g_t(\tau )\bar F_a(\tau )\bar F_b(\tau )d\tau \) and \(\partial g_t(\tau )\bar F_a(\tau )\bar F_b(\tau )d\tau /\partial \theta\), where \(\theta =(m_a,\eta_a,m_b, \eta_b ,\mu ,\sigma )'\), are continuous, the integration and differentiation are interchangeable. With this property, by differentiating \(\Psi_t=\Psi_t(\theta)\) in (4.2) with respect to the parameter vector \(\theta\), the first and second order derivatives, and Gradients and Hessians of log-likelihood function (4.3) can be obtained.

2 Gradients and Hessians of Log-Likelihood (4.3)

For the simplicity of the presentation of formulas, we denote \(\frac{\log x_{ti}^{(a)}-\mu -\log t}{\sigma }\) as \(z_{ti}^{(a)}\). \(z_{tj}^{(b)}\) is defined similarly.

Gradients

$$\begin{aligned}\frac{\partial{\log L}}{\partial{m_a}} = & \frac{{r^{(a)}_t}}{m_a}-{r^{(a)}_t}\log \eta_a+ \sum_{i=1}^{{r^{(a)}_t}}\log {x^{(a)}_{ti}}-\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right)^{m_a}\log\left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right) \\ &-\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right)^{m_a}\log\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right) + \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)\frac{\Psi_{m_a}}{\Psi}, \\ \frac{\partial{\log L}}{\partial{m_b}}=&\frac{{r^{(b)}_t}}{m_b}-{r^{(b)}_t}\log \eta_b+ \sum_{j=1}^{{r^{(b)}_t}}\log {x^{(b)}_{tj}}-\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right)^{m_b}\log\left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right) \\ &-\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right)^{m_b}\log\left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right) + \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)\frac{\Psi_{m_b}}{\Psi},\\[-24pt]\end{aligned}$$
$$\begin{aligned}\frac{\partial{\log L}}{\partial{\eta_a}} = & -\frac{{r^{(a)}_t} m_a}{\eta_a} + \frac{m_a}{\eta_a} \sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right)^{m_a} +\left(\frac{m_a}{\eta_a}\right)\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right)^{m_a}\\ &+\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)\frac{\Psi_{\eta_a} }{\Psi }, \\ \frac{\partial{\log L}}{\partial{\eta_b}}=& -\frac{{r^{(b)}_t} m_b}{\eta_b} + \frac{m_b}{\eta_b} \sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right)^{m_b} +\left(\frac{m_b}{\eta_b}\right)\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right)^{m_b}\\ &+\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)\frac{\Psi_{\eta_b} }{\Psi }, \\ \frac{\partial{\log L}}{\partial{\mu}}=&\sum_{i=1}^{{r^{(a)}_t}}\frac{\xi({z^{(a)}_{ti}})}{\sigma}+\sum_{j=1}^{{r^{(b)}_t}}\frac{\xi({z^{(b)}_{tj}})}{\sigma}+\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)\frac{\Psi_\mu}{\Psi}, \\ \frac{\partial{\log L}}{\partial{\sigma}}=&\sum_{i=1}^{{r^{(a)}_t}}\frac{\xi\left({z^{(a)}_{ti}}\right){z^{(a)}_{ti}}}{\sigma}+\sum_{j=1}^{{r^{(b)}_t}}\frac{\xi\left({z^{(b)}_{tj}}\right){z^{(b)}_{tj}}}{\sigma}+\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)\frac{\Psi_\sigma}{\Psi},\end{aligned}$$
where \(\Psi_\theta := \frac{\partial \Psi}{\partial \theta}\). Here, we omit the suffix gth in \(\Psi, \Psi_{\bullet}\), and \(\Psi_{\bullet \bullet}\) throughout the Appendix.

Hessians

$$\begin{aligned}\frac{\partial^2{{\log}L}}{\partial{{m_a}^2}}=& -\frac{{r^{(a)}_t}}{{m_a}^2}-\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right)^{m_a} \log^2 \left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right) -\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right)^{m_a}\log^2\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right) \\ &+\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[(\Psi_{m_a m_a} /\Psi)-(\Psi_{m_a} /\Psi)^2], \\ \frac{\partial^2{{\log}L}}{\partial{{\eta_a}^2}}=& \frac{{r^{(a)}_t} m_a}{{\eta_a}^2}-\frac{m_a(m_a+1)}{{\eta_a}^2} \sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right)^{m_a} -\frac{m_a(m_a+1)}{{\eta_a}^2} \sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right)^{m_a} \\ & +\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[(\Psi_{\eta_a \eta_a} /\Psi)-(\Psi_{\eta_a} /\Psi)^2], \end{aligned}$$
$$\begin{aligned}\frac{\partial^2{{\log}L}}{\partial{{m_b}^2}}=&-\frac{{r^{(b)}_t}}{{m_b}^2}-\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right)^{m_b} \log^2 \left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right) -\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right)^{m_b} \log^2 \left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right) \\ & +\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[(\Psi_{m_b m_b} /\Psi)-(\Psi_{m_b} /\Psi)^2], \\ \frac{\partial^2{{\log}L}}{\partial{{\eta_b}^2}}=&\frac{{r^{(b)}_t} m_b}{{\eta_b}^2}-\frac{m_b(m_b+1)}{{\eta_b}^2} \sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right)^{m_b} -\frac{m_b(m_b+1)}{{\eta_b}^2} \sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right)^{m_b} \\ & +\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[(\Psi_{\eta_b \eta_b} /\Psi)-(\Psi_{\eta_b} /\Psi)^2], \\ \frac{\partial^2{{\log}L}}{\partial{\mu^2}} =& -\sum_{i=1}^{{r^{(a)}_t}} \frac{A\left({z^{(a)}_{ti}}\right)}{\sigma^2}-\sum_{j=1}^{{r^{(b)}_t}} \frac{A\left({z^{(b)}_{tj}}\right)}{\sigma^2} +\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[(\Psi_{\mu\mu}/\Psi)-{(\Psi_\mu / \Psi)}^2], \\[-24pt]\end{aligned}$$
$$\begin{aligned}\frac{\partial^2{{\log}L}}{\partial{\sigma^2}} =& -\sum_{i=1}^{{r^{(a)}_t}} \frac{C\left({z^{(a)}_{ti}}\right)}{\sigma^2}-\sum_{j=1}^{{r^{(b)}_t}} \frac{C\left({z^{(b)}_{tj}}\right)}{\sigma^2} +\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[(\Psi_{\sigma\sigma}/\Psi)-{(\Psi_\sigma / \Psi)}^2], \\ \frac{\partial^2{{\log}L}}{\partial m_a \partial \eta_a} =& -\frac{{r^{(a)}_t}}{\eta_a}+\frac{1}{\eta_a}\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right)^{m_a} +\frac{m_a}{\eta_a}\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right)^{m_a} \log \left(\frac{{x^{(a)}_{ti}}}{\eta_a}\right) \\ &+\frac{1}{\eta_a}\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right)^{m_a} +\frac{m_a}{\eta_a}\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right)^{m_a} \log \left(\frac{{x^{(b)}_{tj}}}{\eta_a}\right) \\ &+\left({N_t} -{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_a \eta_a} /\Psi -\Psi_{m_a} \Psi_{\eta_a} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial m_a \partial m_b} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_a m_b} /\Psi -\Psi_{m_a} \Psi_{m_b} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial m_a \partial \eta_b} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_a \eta_b} /\Psi -\Psi_{m_a} \Psi_{\eta_b} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial m_a \partial \mu} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_a \mu} /\Psi -\Psi_{m_a} \Psi_{\mu} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial m_a \partial \sigma} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_a \sigma} /\Psi -\Psi_{m_a} \Psi_{\sigma} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial \eta_a \partial m_b} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{\eta_a m_b} /\Psi -\Psi_{\eta_a} \Psi_{m_b} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial \eta_a \partial \eta_b} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{\eta_a \eta_b} /\Psi -\Psi_{\eta_a} \Psi_{\eta_b} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial \eta_a \partial \mu} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{\eta_a \mu} /\Psi -\Psi_{\eta_a} \Psi_{\mu} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial \eta_a \partial \sigma} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{\eta_a \sigma} /\Psi -\Psi_{\eta_a} \Psi_{\sigma} / \Psi^2], \end{aligned}$$
$$\begin{aligned}\frac{\partial^2{{\log}L}}{\partial m_b \partial \eta_b} =& -\frac{{r^{(b)}_t}}{\eta_b} +\frac{1}{\eta_b}\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right)^{m_b} +\frac{m_b}{\eta_b}\sum_{j=1}^{{r^{(b)}_t}}\left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right)^{m_b} \log \left(\frac{{x^{(b)}_{tj}}}{\eta_b}\right) +\frac{1}{\eta_b}\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right)^{m_b} \\ &+\frac{m_b}{\eta_b}\sum_{i=1}^{{r^{(a)}_t}}\left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right)^{m_b} \log \left(\frac{{x^{(a)}_{ti}}}{\eta_b}\right) +\left({N_t} -{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_b \eta_b} /\Psi -\Psi_{m_b} \Psi_{\eta_b} / \Psi^2], \end{aligned}$$
$$\begin{aligned}\frac{\partial^2{{\log}L}}{\partial m_b \partial \mu} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_b \mu} /\Psi -\Psi_{m_b} \Psi_{\mu} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial m_b \partial \sigma} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{m_b \sigma} /\Psi -\Psi_{m_b} \Psi_{\sigma} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial \eta_b \partial \mu} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{\eta_b \mu} /\Psi -\Psi_{\eta_b} \Psi_{\mu} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial \eta_b \partial \sigma} =& \left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{\eta_b \sigma} /\Psi -\Psi_{\eta_b} \Psi_{\sigma} / \Psi^2], \\ \frac{\partial^2{{\log}L}}{\partial \mu \partial \sigma} =& -\sum_{i=1}^{{r^{(a)}_t}} \frac{B\left({z^{(a)}_{ti}}\right)}{\sigma^2}-\sum_{j=1}^{{r^{(b)}_t}} \frac{B\left({z^{(b)}_{tj}}\right)}{\sigma^2} +\left({N_t}-{r^{(a)}_t}-{r^{(b)}_t}\right)[\Psi_{\mu \sigma} /\Psi -\Psi_\mu \Psi_\sigma / \Psi^2], \end{aligned}$$
where
$$\begin{aligned}&\Psi_{\theta_1 \theta_2} := \frac{\partial^{2} \Psi}{\partial \theta_1 \partial \theta_2}\\ & {z^{(a)}_t} := \left(\log x^{(a)}_t - \mu - \log t\right)/\sigma \\ & {z^{(b)}_t} := \left(\log x^{(b)}_t - \mu - \log t\right)/\sigma \\ & \xi (z) := \phi(z)/\bar{\Phi}(z) \\ & A(z) := \xi(z)[\xi(z)-z] \\ & B(z) := \xi(z) +A(z)\cdot z \\ & C(z) := z[\xi(z) + B(z)].\end{aligned}$$
Here, \(\phi(\cdot),\bar \Phi(\cdot)\) represent the pdf and survival function of the standard normal distribution.

3 Expectation of the Elements of Hessians

$$\begin{aligned}E \left[\frac{\partial^2{\log L}}{\partial{{m_a}^2}}\right] = & -\frac{{\rho^{(a)}_t}}{{m_a}^2}-\frac{1}{{\eta_a}^{m_a}}(E_{a3}-2\log \eta_a \cdot E_{a2}+\log^2 \eta_a \cdot E_{a1}) \\ & -\frac{1}{{\eta_a}^{m_a}}(E_{b3}-2\log \eta_a \cdot E_{b2}+\log^2 \eta_a \cdot E_{b1})\\ &+\left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[(\Psi_{m_a m_a} /\Psi)-(\Psi_{m_a} /\Psi)^2], \end{aligned}$$
$$\begin{aligned}E \left[\frac{\partial^2{\log L}}{\partial{{\eta_a}^2}}\right] = & \frac{{\rho^{(a)}_t} m_a}{{\eta_a}^2}-\frac{m_a(m_a+1)}{{\eta_a}^{m_a+2}}E_{a1} -\frac{m_a(m_a+1)}{{\eta_a}^{m_a+2}}E_{b1} \\ &+ \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[(\Psi_{\eta_a \eta_a} /\Psi)-(\Psi_{\eta_a} /\Psi)^2], \\ E \left[\frac{\partial^2{\log L}}{\partial{{m_b}^2}}\right] = & -\frac{{\rho^{(b)}_t}}{{m_b}^2}-\frac{1}{{\eta_b}^{m_b}}(E_{b3}-2\log \eta_b \cdot E_{b2}+\log^2 \eta_b \cdot E_{b1}) \\ & -\frac{1}{{\eta_b}^{m_b}}(E_{a3}-2\log \eta_b \cdot E_{a2}+\log^2 \eta_b \cdot E_{a1})\\ & +\left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[(\Psi_{m_b m_b} /\Psi)-(\Psi_{m_b} /\Psi)^2], \\ E \left[\frac{\partial^2{\log L}}{\partial{{\eta_b}^2}}\right] = &\frac{{\rho^{(b)}_t} m_b}{{\eta_b}^2}-\frac{m_b(m_b+1)}{{\eta_b}^{m_b+2}}E_{b1} -\frac{m_b(m_b+1)}{{\eta_b}^{m_b+2}}E_{a1}\\ & + \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[(\Psi_{\eta_b \eta_b} /\Psi)-(\Psi_{\eta_b} /\Psi)^2], \\ E \left[\frac{\partial^2{\log L}}{\partial{\mu^2}}\right] = & -\frac{E_{a4}}{\sigma^2}-\frac{E_{b4}}{\sigma^2} +\left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[(\Psi_{\mu\mu}/\Psi) -{(\Psi_\mu / \Psi)}^2], \\ E \left[\frac{\partial^2{\log L}}{\partial{\sigma^2}}\right] = & -\frac{E_{a6}}{\sigma^2}-\frac{E_{b6}}{\sigma^2} + \left({N_t} -{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[(\Psi_{\sigma\sigma}/\Psi)-{(\Psi_\sigma / \Psi)}^2], \\ E \left[\frac{\partial^2{\log L}}{\partial m_a \partial m_b}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_a m_b} /\Psi -\Psi_{m_a} \Psi_{m_b} / \Psi^2], \\E \left[\frac{\partial^2{\log L}}{\partial m_a \partial \eta_a}\right] = & -\frac{{\rho^{(a)}_t}}{\eta_a}+\frac{1}{{\eta_a}^{m_a+1}}\{m_a E_{a2}+(1-m_a\log \eta_a) \cdot E_{a1}\}\\ &+\frac{1}{{\eta_a}^{m_a+1}}\{m_a E_{b2}+(1-m_a\log \eta_a )\cdot E_{b1}\} \\ & +\left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_a \eta_a}/\Psi -\Psi_{m_a} \Psi_{\eta_a}/\Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial m_a \partial \eta_b}\right] = &\left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_a \eta_b}/\Psi -\Psi_{m_a} \Phi_{\eta_b}/\Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial m_a \partial \mu}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_a \mu} /\Psi -\Psi_{m_a} \Psi_\mu / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial m_a \partial \sigma}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_a \sigma} /\Psi -\Psi_{m_a} \Psi_\sigma / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial \eta_a \partial m_b}\right] = &\left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{\eta_a m_b}/\Psi -\Psi_{\eta_a} \Phi_{m_b}/\Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial \eta_a \partial \eta_b}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{\eta_a \eta_b} /\Psi -\Psi_{\eta_a} \Psi_{\eta_b} / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial \eta_a \partial \mu}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{\eta_a \mu} /\Psi -\Psi_{\eta_a} \Psi_\mu / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial \eta_a \partial \sigma}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{\eta_a \sigma} /\Psi -\Psi_{\eta_a} \Psi_\sigma / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial m_b \partial \eta_b}\right] = & -\frac{{\rho^{(b)}_t}}{\eta_b}+\frac{1}{{\eta_b}^{m_b+1}}\{m_b E_{b2}+(1-m_b\log \eta_b) \cdot E_{b1}\}\\ &+\frac{1}{{\eta_b}^{m_b+1}}\{m_b E_{a2}+(1-m_b\log \eta_b) \cdot E_{a1}\} \\ & +\left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_b \eta_b}/\Psi -\Psi_{m_b} \Phi_{\eta_b}/\Psi^2], \end{aligned}$$
$$\begin{aligned}E \left[\frac{\partial^2{\log L}}{\partial m_b \partial \mu}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_b \mu} /\Psi -\Psi_{m_b} \Psi_\mu / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial m_b \partial \sigma}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{m_b \sigma} /\Psi -\Psi_{m_b} \Psi_\sigma / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial \eta_b \partial \mu}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{\eta_b \mu} /\Psi -\Psi_{\eta_b} \Psi_\mu / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial \eta_b \partial \sigma}\right] = & \left({N_t}-{\rho^{(a)}_t}-{\rho^{(b)}_t}\right)[\Psi_{\eta_b \sigma} /\Psi -\Psi_{\eta_b} \Psi_\sigma / \Psi^2], \\ E \left[\frac{\partial^2{\log L}}{\partial \mu \partial \sigma}\right] = & -\frac{E_{a5}}{\sigma^2}-\frac{E_{b5}}{\sigma^2} +\left({N_t}-{\rho^{(a)}_t} -{\rho^{(b)}_t}\right)[\Psi_{\mu \sigma} /\Psi -\Psi_\mu \Psi_\sigma / \Psi^2], \end{aligned}$$
where \(E_{a\cdot}\) and \(E_{b\cdot}\) are defined as follows:
$$\begin{aligned}E_{a1} &= E[{x^{(a)}_t}^{m_a} | {X^{(a)}_{t}} < {Y_t}, {X^{(a)}_{t}} < {x^{(b)}_{t}}]\\ & = {\rho^{(a)}_t} \cdot \int_0^\infty {x}^{m_a} \cdot \frac{f_a\left(x^{(a)}_t\right)\bar F_b\left(x^{(a)}_t\right) \bar{G}\left(x^{(a)}_t\right)}{p^{(a)}_t}dx^{(a)}_t, \\ E_{a2} &= E[{x^{(a)}_t}^{m_a} \log x^{(a)}_t | {X^{(a)}_{t}} < {Y_t},{X^{(a)}_{t}} < {x^{(b)}_{t}}]\\ & = {\rho^{(a)}_t} \cdot \int_0^\infty {x}^{m_a} \log x^{(a)}_t \cdot \frac{f_a\left(x^{(a)}_t\right)\bar F_b\left(x^{(a)}_t\right) \bar{G}\left(x^{(a)}_t\right)}{p^{(a)}_t}dx^{(a)}_t, \\E_{a3} &= E[{x^{(a)}_t}^{m_a} \log^2 x^{(a)}_t | {X^{(a)}_{t}} < {Y_t},{X^{(a)}_{t}} < {x^{(b)}_{t}}]\\ & = {\rho^{(a)}_t} \cdot \int_0^\infty {x}^{m_a} \log^2 x^{(a)}_t \cdot \frac{f_a\left(x^{(a)}_t\right)\bar F_b\left(x^{(a)}_t\right) \bar{G}\left(x^{(a)}_t\right)}{p^{(a)}_t}dx^{(a)}_t, \\ E_{a4} & = E[A({z^{(a)}_t}) | {X^{(a)}_{t}} < {Y_t},{X^{(a)}_{t}} < {x^{(b)}_{t}}]\\ & = {\rho^{(a)}_t} \cdot \int_0^\infty A\left({z^{(a)}_t}\right) \cdot \frac{f_a\left(x^{(a)}_t\right)\bar F_b\left(x^{(a)}_t\right) \bar{G}\left(x^{(a)}_t\right)}{p^{(a)}_t}dx^{(a)}_t, \\ E_{a5}& = E[B({z^{(a)}_t}) | {X^{(a)}_{t}} < {Y_t},{X^{(a)}_{t}} < {x^{(b)}_{t}}]\\ & = {\rho^{(a)}_t} \cdot \int_0^\infty B\left({z^{(a)}_t}\right) \cdot \frac{f_a\left(x^{(a)}_t\right)\bar F_b\left(x^{(a)}_t\right) \bar{G}\left(x^{(a)}_t\right)}{p^{(a)}_t}dx^{(a)}_t, \\ E_{a6}& = E[C({z^{(a)}_t}) | {X^{(a)}_{t}} < {Y_t},{X^{(a)}_{t}} < {x^{(b)}_{t}}]\\ & = {\rho^{(a)}_t} \cdot \int_0^\infty C\left({z^{(a)}_t}\right) \cdot \frac{f_a\left(x^{(a)}_t\right)\bar F_b\left(x^{(a)}_t\right) \bar{G}\left(x^{(a)}_t\right)}{p^{(a)}_t}dx^{(a)}_t, \\E_{b1}& = E[{x^{(b)}_t}^{m_b} | {x^{(b)}_{t}} < {Y_t}, {x^{(b)}_{t}} < {X^{(a)}_{t}}]\\ & = {\rho^{(b)}_t} \cdot \int_0^\infty {x^{(b)}_t}^{m_b} \cdot \frac{f_b\left(x^{(b)}_t\right)\bar F_a\left(x^{(b)}_t\right) \bar{G}\left(x^{(b)}_t\right)}{p^{(b)}_t}dx^{(b)}_t, \end{aligned}$$
$$\begin{aligned}E_{b2} &= E[{x^{(b)}_t}^{m_b} \log x^{(b)}_t | {x^{(b)}_{t}} < {Y_t},{x^{(b)}_{t}} < {X^{(a)}_{t}}]\\ & = {\rho^{(b)}_t} \cdot \int_0^\infty {x^{(b)}_t}^{m_b} \log x^{(b)}_t \cdot \frac{f_b\left(x^{(b)}_t\right)\bar F_a\left(x^{(b)}_t\right) \bar{G}\left(x^{(b)}_t\right)}{p^{(b)}_t}dx^{(b)}_t, \\ E_{b3}& = E[{x^{(b)}_t}^{m_b} \log^2 x^{(b)}_t | {x^{(b)}_{t}} < {Y_t},{x^{(b)}_{t}} < {X^{(a)}_{t}}] \\ &= {\rho^{(b)}_t} \cdot \int_0^\infty {x^{(b)}_t}^{m_b} \log^2 x^{(b)}_t \cdot \frac{f_b\left(x^{(b)}_t\right)\bar F_a\left(x^{(b)}_t\right) \bar{G}\left(x^{(b)}_t\right)}{p^{(b)}_t}dx^{(b)}_t, \\ E_{b4} &= E[A({z^{(b)}_t}) | {x^{(b)}_{t}} < {Y_t},{x^{(b)}_{t}} < {X^{(a)}_{t}}]\\ & = {\rho^{(b)}_t} \cdot \int_0^\infty A\left({z^{(b)}_t}\right) \cdot \frac{f_b\left(x^{(b)}_t\right)\bar F_a\left(x^{(b)}_t\right) \bar{G}\left(x^{(b)}_t\right)}{p^{(b)}_t}dx^{(b)}_t, \\ E_{b5}& = E[B({z^{(b)}_t}) | {x^{(b)}_{t}} < {Y_t},{x^{(b)}_{t}} < {X^{(a)}_{t}}]\\ & = {\rho^{(b)}_t} \cdot \int_0^\infty B\left({z^{(b)}_t}\right) \cdot \frac{f_b\left(x^{(b)}_t\right)\bar F_a\left(x^{(b)}_t\right) \bar{G}\left(x^{(b)}_t\right)}{p^{(b)}_t}dx^{(b)}_t, \\ E_{b6} &= E[C({z^{(b)}_t}) | {x^{(b)}_{t}} < {Y_t},{x^{(b)}_{t}} < {X^{(a)}_{t}}] = {\rho^{(b)}_t} \cdot \int_0^\infty C\left({z^{(b)}_t}\right) \cdot \\ &\frac{f_b\left(x^{(b)}_t\right)\bar F_a\left(x^{(b)}_t\right) \bar{G}\left(x^{(b)}_t\right)}{p^{(b)}_t}dx^{(b)}_t, \end{aligned}$$
and
$$\begin{aligned}{\rho^{(a)}_t} := & p^{(a)}_t \cdot {N_t}, \\ {\rho^{(b)}_t} := & p^{(b)}_t \cdot {N_t},\end{aligned}$$
where \(p^{(a)}_t\) and \(p^{(b)}_t\) represent probabilities of failure modes (a) and (b), respectively;
$$\begin{aligned}p^{(a)}_t := & \int_0^\infty f_a(x)\bar F_b(x)\bar{G_t}(x)dx, \\ p^{(b)}_t := & \int_0^\infty f_b(x)\bar F_a(x)\bar{G_t}(x)dx, \end{aligned}$$

4 Gauss–Hermite Quadrature

The numerical integration, also called quadrature, is the study of how the numerical value of an integral can be found. The basic idea for the Gaussian quadrature rule is

$$\int_a^b w(v) dv = \int_a^b p(v)h(v)dv \cong \sum_{j=1}^q h(v_j),$$
(4.8)

where p(v) is a weight function and q is a Hermite integration order. Only h(v) needs to be a polynomial or close to polynomial, so that the weight function can be singular. The weights and nodes of the rule depend on the particular choice of the weight function. If the weight function, \(p(v) = \exp(-v^2)\), \(-\infty < v < \infty\), (4.8) is called Gauss–Hermite quadrature. By definition the Gauss–Hermite representation of \(\Psi_t(\theta)\) in (4.2) can be given by

$$\Psi_t(\theta) \cong \sum_{j=1}^q \frac{p_j}{\sqrt{\pi}} e^{-{\eta_a}^{-m_a} t^{m_a} e^{m_a(\mu+\sqrt{2} \sigma v_j)}-{\eta_b}^{-m_b} t^{m_b} e^{m_b(\mu+\sqrt{2} \sigma v_j)}}.$$
(4.9)

The weights, p j, and abscissas, v j, are tabulated in Table 25.10 of Abramowitz and Stegun [1] for \(q \leq 20\). In this study we use \(q = 25\) for better accuracy. For this purpose, we use a program to generate p j, and v j.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhaüser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suzuki, K., Yamamoto, W., Hara, T., Alam, M.M. (2010). Properties of Lifetime Estimators Based on Warranty Data Consisting only of Failures. In: Nikulin, M., Limnios, N., Balakrishnan, N., Kahle, W., Huber-Carol, C. (eds) Advances in Degradation Modeling. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4924-1_4

Download citation

Publish with us

Policies and ethics