Skip to main content

High Leverage Points and Outliers in Generalized Linear Models for Ordinal Data

  • Chapter
  • First Online:
Advances in Data Analysis

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

A generalized hat matrix based on Φ-divergences is proposed to determine how much influence or leverage each data value can have on each fitted value to a generalized linear model for ordinal data. After studying for evidence of points where the data value has high leverage on the fitted value, if such influential points are present, we must still determine whether they have had any adverse effects on the fit. To evaluate it we propose a new family of residuals based on Φ-divergences. All the diagnostic measures are illustrated through the analysis of real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, S.M. and Silvey, S.D. (1966). A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society B, 26, 131–142.

    Google Scholar 

  • Bedrick, E.J. and Tsai, C. (1993). Diagnostics for binomial response models using power divergence statistics. Computational Statistics and Data Analysis, 15, 381–392.

    Article  MATH  Google Scholar 

  • Cook, R.D. (1986). Assessment of local influence (with discussion). Journal of the Royal Statistical Society B, 48, 133–169.

    MATH  Google Scholar 

  • Cook, R.D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman8Hall, New York.

    MATH  Google Scholar 

  • Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society B., 46, 440–464.

    MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Green, P.J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives (with discussion). Journal of the Royal Statistical Society B, 46, 149–192.

    MATH  Google Scholar 

  • Harville, D.A. (1997). Matrix Algebra from Statistician’s Perspective. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Jorgensen, B. (1983). Maximum likehood estimation and large sample inference for generalized linear and non linear regresion models. Biometrika, 70, 19–28.

    MathSciNet  Google Scholar 

  • Kagan, M. (1963). On the theory of Fisher’s amount of information. Sov. Math. Dokl., 4, 991–993.

    MATH  MathSciNet  Google Scholar 

  • Lesaffre, E. and Albert, A. (1989). Multiple-group logistic regression diagnostics. Applied Statistics, 38, 425–440.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, I. and Agresti, A. (2005). The analysis of ordered categorical data: An overview and a survey of recent developments. Test, 14(1), 1–73.

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh, P. (1980). Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society B, 42, 109–142.

    MATH  MathSciNet  Google Scholar 

  • McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models (2nd ed.). Chapman8Hall, New York.

    MATH  Google Scholar 

  • Pardo, L. (2006). Statistical Inference Based on Divergence Measures. Chapman & Hall, New York.

    MATH  Google Scholar 

  • Pardo, M.C. (2008). Testing equality restrictions in generalized linear models. Metrika, DOI: 10.1007/500184-009-0275-y.

    Google Scholar 

  • Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705–724.

    Article  MATH  MathSciNet  Google Scholar 

  • Rao, C.R. (1973). Linear Statistical Inference and ITS Applications. John Wiley, New York.

    Book  MATH  Google Scholar 

  • Thomas,W. and Cook, R.D. (1990). Assesing influence on predictions from generalized linear models. Technometrics, 32, 59–65.

    Article  MathSciNet  Google Scholar 

  • Vajda, I. (1989). Theory of Statistical Inference and Information. Kluwer Academic, Dordrecht.

    MATH  Google Scholar 

  • Williams, D.A. (1987). Generalized linear model diagnostics using the deviance and single case deletions. Applied Statistics, 36(2), 181–191.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grants MTM2006-00892 and UCM-BSCH-2008-910707.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Pardo, M. (2010). High Leverage Points and Outliers in Generalized Linear Models for Ordinal Data. In: Skiadas, C. (eds) Advances in Data Analysis. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4799-5_7

Download citation

Publish with us

Policies and ethics