Skip to main content

Regulation of Apoptosis via the NFκB Pathway: Modeling and Analysis

  • Chapter
  • First Online:
Dynamics On and Of Complex Networks

Programmed cell death (or apoptosis) has an essential biological function, enabling successful embryonic development, as well as maintenance of a healthy living organism [6]. Apoptosis is a physiological process which enables an organism to remove unwanted or damaged cells. Malfunctioning apoptotic pathways can lead to many diseases, including cancer and inflammatory or immune system related problems. A family of proteins called caspases are primarily responsible for execution of the apoptotic process: basically, in response to appropriate stimuli, initiator caspases (for instance, caspases 8, 9) activate effector caspases (for instance, caspases 3, 7), which will then cleave various cellular substrates to accomplish the cell death process [22].

Nuclear factor κB (NFκB) is a transcription factor for a large group of genes which are involved in several different pathways. For instance, NFκB activates its own inhibitor (IκB) [14] as well as groups of pro-apoptotic and anti-apoptotic genes [21]. Among the latter, NFκB activates transcription of a gene encoding for inhibitor of apoptosis protein (IAP). This protein in turn contributes to downregulate the activity of the caspase cascade which forms the core of the apoptotic pathway [6, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Albert and H.G. Othmer. The topology of the regulatory interactions predicts the expression pattern of the drosophila segment polarity genes. J. Theor. Biol., 223:1–18, 2003.

    Article  MathSciNet  Google Scholar 

  2. G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. J. Theor. Biol., 229:339–347, 2004.

    Article  MathSciNet  Google Scholar 

  3. R. Casey, H. de Jong, and J.L. Gouzé. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J. Math. Biol., 52:27–56, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Chaves, T. Eissing, and F. Allgöwer. Bistable biological systems: a characterization through local compact input-to-state stability. IEEE Trans. Automat. Control, 53:87–100, 2008.

    Article  Google Scholar 

  5. M. Chaves, E.D. Sontag, and R. Albert. Methods of robustness analysis for boolean models of gene control networks. IEE Proc. Syst. Biol., 153:154–167, 2006.

    Article  Google Scholar 

  6. N.N. Danial and S.J. Korsmeyer. Cell death: critical control points. Cell, 116:205–216, 2004.

    Article  Google Scholar 

  7. H. de Jong, J.L. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann. Qualitative simulation of genetic regulatory networks using piecewise linear models. Bull. Math. Biol., 66:301–340, 2004.

    Article  MathSciNet  Google Scholar 

  8. T. Eissing, H. Conzelmann, E.D. Gilles, F. Allgöwer, E. Bullinger, and P. Scheurich. Bistability analysis of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem., 279:36892–36897, 2004.

    Article  Google Scholar 

  9. A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics, 22(14):e124–e131, 2006.

    Article  Google Scholar 

  10. C. Frelin, V. Imbert, V. Bottero, N. Gonthier, A.K. Samraj, K. Schulze-Osthoff, P. Auberger, G. Courtois, and J.F. Peyron. Inhibition of the NF-κB survival pathway via caspase-dependent cleavage of the IKK complex scaffold protein and NF-κB essential modulator NEMO. Cell Death Differ., 15:152–160, 2008.

    Article  Google Scholar 

  11. T. Gedeon. Attractors in continuous-time switching networks. Communications on Pure and Applied Analysis, 2:187–209, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Glass. Classification of biological networks by their qualitative dynamics. J. Theor. Biol., 54:85–107, 1975.

    Article  Google Scholar 

  13. L. Glass and S.A. Kauffman. The logical analysis of continuous, nonlinear biochemical control networks. J. Theor. Biol., 39:103–129, 1973.

    Article  Google Scholar 

  14. A. Hoffmann, A. Levchenko, M.L. Scott, and D. Baltimore. The IκB-NFκB signaling module: temporal control and selective gene activation. Science, 298:1241–1245, 2002.

    Article  Google Scholar 

  15. A.E.C. Ihekwaba, D. Broomhead, R. Grimley, N. Benson, and D.B. Kell. Sensitivity analysis of parameters controlling oscillatory signalling in the NF-κB pathway: the roles of IKK and IκBα. IEE Syst. Biol., 1:93–103, 2004.

    Article  Google Scholar 

  16. G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A.J. Levine, M. Elowitz, and U. Alon. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genetics, 36:147–150, 2004.

    Article  Google Scholar 

  17. T. Lipniacki, P. Paszek, A.R. Brasier, B. Luxon, and M. Kimmel. Mathematical model of NFκB regulatory module. J. Theor. Biol., 228:195–215, 2004.

    Article  MathSciNet  Google Scholar 

  18. E.R. McDonald and W.S. El-Deiry. Suppression of caspase-8 and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth. Proc. Natl. Acad. Sci. USA, 101:6170–6175, 2004.

    Article  Google Scholar 

  19. D.E. Nelson, A.E.C. Ihekwaba, M. Elliott, J.R. Johnson, C.A. Gibney, B.E. Foreman, G. Nelson, V. See, C.A. Horton, D.G. Spiller, S.W. Edwards, H.P. McDowell, J.F. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D.B. Kell, and M.R.H. White. Oscillations in NF-κB signaling control the dynamics of gene expression. Science, 306:704–708, 2004.

    Article  Google Scholar 

  20. E.L. O'Dea, D. Barken, R.Q. Peralta, K.T. Tran, S.L. Werner, J.D. Kearns, A. Levchenko, and A. Hoffmann. A homeostatic model of IκB metabolism to control constitutive NFκB activity. Mol. Syst. Biol., 3:111, 2007.

    Article  Google Scholar 

  21. N.D. Perkins. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol., 8:49–62, 2007.

    Article  Google Scholar 

  22. M. Rehm, H. Düßmann, R.U. Jänicke, J.M. Tavaré, D. Kögel, and J.H.M. Prehn. Single-cell fluorescence resonance energy transfer analysis demonstrates that cas-pase activation during apoptosis is a rapid process. J. Biol. Chem., 277:24506–24514, 2002.

    Article  Google Scholar 

  23. M. Schliemann. Modelling and experimental validation of TNFα induced pro- and antiapoptotic signalling. Master's thesis, University of Stuttgart, Germany, 2006.

    Google Scholar 

  24. M. Schliemann, T. Eissing, P. Scheurich, and E. Bullinger. Mathematical modelling of TNF-α induced apoptotic and anti-apoptotic signalling pathways in mammalian cells based on dynamic and quantitative experiments. In Proc. 2nd Int. Conf. Foundations Systems Biology in Engineering (FOSBE), Stuttgart, Germany, pages 213–218, 2007.

    Google Scholar 

  25. R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol., 42:563–585, 1973.

    Article  Google Scholar 

  26. R. Thomas, D. Thieffry, and M. Kaufman. Dynamical behaviour of biological regulatory networks - i. biological rule of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol., 57:247–276, 1995.

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Peter Scheurich and Monica Schliemann for their many interesting and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madalena Chaves , Thomas Eissing or Frank Allgöwer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chaves, M., Eissing, T., Allgöwer, F. (2009). Regulation of Apoptosis via the NFκB Pathway: Modeling and Analysis. In: Ganguly, N., Deutsch, A., Mukherjee, A. (eds) Dynamics On and Of Complex Networks. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4751-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4751-3_2

  • Published:

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4750-6

  • Online ISBN: 978-0-8176-4751-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics