Skip to main content

Extreme Value Results for Scan Statistics

  • Chapter
  • First Online:
Scan Statistics

Abstract

In the first part of this chapter we focus on the classical scan and multiple scan statistic, defined on a sequence of independent and identically distributed (i.i.d.) binary trials and review a number of bounds and approximations for their distributions which have been developed by the aid of distance measures. Moreover, we discuss briefly a number of asymptotic results that have been established by setting up appropriate conditions guaranteeing the convergence (to zero) of the distance measures’ upper bounds. In the second part, we study a multiple scan statistic enumerating variable by considering a general threshold-based framework, defined on i.i.d. continuous random variables. More specifically, we first prove a compound Poisson approximation for the total number of fixed length overlapping moving windows containing a prespecified number of threshold exceedances. The classical scan and multiple scan statistic may be treated as a special case of this general model. Next we exploit the previous result to gain some new extreme value results for the scan enumerating statistic under the assumption that the continuous random variables belong to the maximum domain of attraction of one of the three extreme value distributions (Fréchet, reversed Weibull, Gumbel). Finally, we elucidate how the general results can be applied in a number of classical continuous distributions (Pareto, uniform, exponential and normal).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Products of the form \(\prod _{i={i}_{1}}^{{i}_{2}}f(i)\) with i 1>i 2 are conventionally set equal to 1.

  2. 2.

    Since \(\frac{d} {d\theta }H(\theta ,p)\) =h(θ,p) > 0, the quantity H(θ,p) varies monotonically from 0 to − ln p; therefore, the equation H(θ,p) = c admits a unique solution θ ∈ (p, 1). for 0 < c < −ln p.

References

  1. Arnold, B.C. (1985). Pareto distributions, In Encyclopedia of Statistical Sciences, S. Kotz, N.L. Johnson and C.B. Read (editors), 568–574, John Wiley & Sons, New York.

    Google Scholar 

  2. Arnold, B.C. and Balakrishnan, N. (1989). Relations, Bounds, and Approximations for Order Statistics, Springer, New York.

    MATH  Google Scholar 

  3. Arratia, R.L., Goldstein, L. and Gordon, L. (1990). Poisson approximation and the Chen-Stein method, Statistical Science, 5, 403–423.

    MathSciNet  MATH  Google Scholar 

  4. Arratia, R.L., Gordon, L. and Waterman, M. (1990). The Erdős-Rényi Law in distribution, for coin tossing and sequence matching, Annals of Statistics, 18, 539–570.

    Article  MathSciNet  MATH  Google Scholar 

  5. Balakrishnan, N. and Koutras, M.V. (2002). Runs, Scans and Applications, John Wiley & Sons, New York.

    Google Scholar 

  6. Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation, Clarendon Press, Oxford.

    MATH  Google Scholar 

  7. Boutsikas, M.V. and Koutras, M.V. (2001). Compound Poisson approximation for sums of dependent random variables, In Ch.A. Charalambides, M.V. Koutras, N. Balakrishnan (eds), Probability and Statistical Models with Applications, 63–86, Chapman & Hall, Boca Raton, FL.

    Google Scholar 

  8. Boutsikas, M.V. and Koutras, M.V. (2002). Modeling claim exceedances over thresholds, Insurance: Mathematics and Economics, 30, 67–83.

    Article  MathSciNet  MATH  Google Scholar 

  9. Boutsikas, M.V. and Koutras, M.V. (2006). On the asymptotic distribution of the discrete scan statistic, Journal of Applied Probability, 43, 1137–1154.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bowers, N.L., Gerber, H.U., Hickman, J., Jones, D.A. and Nesbitt, C.J. (1997). Actuarial Mathematics, 2nd edition, The Society of Actuaries, Illinois.

    Google Scholar 

  11. Chen, J. and Glaz, J. (1999). Approximations for the distribution and the moments of discrete scan statistics, In Scan Statistics and Applications, J. Glaz and N. Balakrishnan, (eds), Birkh\ddot{{ a}}user, Boston, MA.

    Google Scholar 

  12. Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, London.

    MATH  Google Scholar 

  13. David, H.A. and Nagaraja, H.N. (2003). Order Statistics, (3rd edition), John Wiley & Sons, New York.

    Book  MATH  Google Scholar 

  14. Deheuvels, P. and Devroye, L. (1987). Limit laws of Erd\ddot{{ o}}s-Rényi-Shepp type, The Annals of Probability, 15, 1363–1386.

    Article  MathSciNet  MATH  Google Scholar 

  15. Dembo, A. and Karlin, S. (1992). Poisson approximations for r-scan processes, Annals of Applied Probability, 2, 329–357.

    Article  MathSciNet  MATH  Google Scholar 

  16. Dudkiewicz, J. (1998). Compound Poisson approximation for extremes for moving minima in arrays of independent random variables, Applicationes Mathematicae, 25, 19–28.

    MathSciNet  MATH  Google Scholar 

  17. Embrechts, P., Kl\ddot{{ u}}ppelberg, C. and Mikosch, T. (1997). Modeling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin.

    Google Scholar 

  18. Erdős, P. and Rényi, A. (1970). On a new law of large numbers, Journal d’Analyse Mathematique, 23, 103–111.

    Google Scholar 

  19. Fu, J.C. (2001). Distribution of the scan statistic for a sequence of bistate trials, Journal of Applied Probability, 38, 908–916.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, J.C. and Lou, W.Y.W. (2003). Distribution Theory of Runs and Patterns and Its Applications, Word Scientific Publishing, Singapore.

    MATH  Google Scholar 

  21. Glaz, J. and Balakrishnan, N. (eds.) (1999). Scan Statistics and Applications, Birkh\ddot{{ a}}user, Boston, MA.

    Google Scholar 

  22. Glaz, J. and Naus, J. (1991). Tight bounds and approximations for scan statistic probabilities for discrete data, The Annals of Applied Probability, 1, 306–318.

    Article  MathSciNet  MATH  Google Scholar 

  23. Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics, Springer-Verlag, New York.

    MATH  Google Scholar 

  24. Goldstein, L. and Waterman, M. (1992). Poisson, compound Poisson and process approximations for testing statistical significance in sequence comparisons, Bulletin of Mathematical Biology, 54, 785–812.

    MATH  Google Scholar 

  25. Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, John Wiley & Sons, New York.

    MATH  Google Scholar 

  26. Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications, Imperial College Press, London.

    Book  MATH  Google Scholar 

  27. Koutras, M.V. and Alexandrou, V.A. (1995). Runs, scans and run model distributions: a unified Markov chain approach, Annals of the Institute of Statistical Mathematics, 47, 743–766.

    Article  MathSciNet  MATH  Google Scholar 

  28. Reiss, R.D. and Thomas, M. (1997). Statistical Analysis of Extreme Values, Birkh\ddot{{ a}}user, Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boutsikas, M.V., Koutras, M.V., Milienos, F.S. (2009). Extreme Value Results for Scan Statistics. In: Glaz, J., Pozdnyakov, V., Wallenstein, S. (eds) Scan Statistics. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4749-0_3

Download citation

Publish with us

Policies and ethics