Skip to main content

Poisson and Symplectic Functions in Lie Algebroid Theory

  • Chapter
  • First Online:
Higher Structures in Geometry and Physics

Part of the book series: Progress in Mathematics ((PM,volume 287))

Abstract

Emphasizing the role of Gerstenhaber algebras and of higher derived brackets in the theory of Lie algebroids, we show that the several Lie algebroid brackets which have been introduced in the recent literature can all be defined in terms of Poisson and pre-symplectic functions in the sense of Roytenberg and Terashima. We prove that in this very general framework there exists a one-to-one correspondence between nondegenerate Poisson functions and symplectic functions. We also determine the differential associated to a Lie algebroid structure obtained by twisting a structure with background by both a Lie bialgebra action and a Poisson bivector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [23, 5], Lie-quasi bialgebras were called Jacobian quasi-bialgebras, and quasi-Lie bialgebras were called co-Jacobian quasi-bialgebras. We also point out that, in the translation of Drinfeld’s original paper [13], the term “quasi-Lie bialgebra” is used for what we call Lie-quasi bialgebra. Proto-bialgebras were introduced in [23] where they were called proto-Lie-bialgebras, to distinguish them from the associative version of this notion.

  2. 2.

    There are some changes in the notations. In particular, the notations ϕ and ψ used by Roytenberg in [46] are exchanged in order to return to the conventions of [23, 5, 27].

  3. 3.

    Even Poisson brackets had already appeared in the context of the quantization of systems with constraints in the work of Batalin, Fradkin and Vilkovisky. See [50] and references therein.

  4. 4.

    The Koszul bracket [33] restricts to the bracket of sections of Γ(V ) generalizing the well-known bracket of 1-forms on a Poisson manifold. The bracket of 1-forms on symplectic manifolds was introduced in the book of Abraham and Marsden (1967). For Poisson manifolds, it was discovered independently in the 1980s by several authors – Gelfand and Dorfman, Fuchssteiner, Magri and Morosi, Daletskii – and Weinstein (see [9]) has shown that it is a Lie algebroid bracket.

References

  1. Alekseev, A., Kosmann-Schwarzbach, Y.: Manin pairs and moment maps. J. Diff. Geom. 56, 133–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseev, A., Kosmann-Schwarzbach, Y., Meinrenken, E.: Quasi-Poisson manifolds. Can. J. Math. 54, 3–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bangoura, M.: Algèbres quasi-Gerstenhaber différentielles. Travaux Mathéma-tiques (Luxembourg) 16, 299–314 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bangoura, M.: Algèbres d’homotopie associées à une proto-bigèbre de Lie. Can. J. Math. 59, 696–711 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bangoura, M., Kosmann-Schwarzbach, Y.: The double of a Jacobian quasi-bialgebra. Lett. Math. Phys. 28, 13–29 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bursztyn, H., Crainic, M.: Dirac structures, momentum maps, and quasi-Poisson manifolds. In: Marsden, J., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 1–40. Birkhäuser, Boston (2005)

    Google Scholar 

  7. Bursztyn, H., Crainic, M.: Dirac geometry, quasi-Poisson actions and DG-valued moment maps. J. Diff. Geom. 82, 501–566 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bursztyn, H., Crainic, M., Ševera, P.: Quasi-Poisson structures as Dirac structures. Travaux Mathématiques (Luxembourg) 16, 41–52 (2005)

    Google Scholar 

  9. Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. Publ. Dép. Math. Univ. Claude Bernard Lyon, Nouvelle Sér. 2/A, 1–62 (1987)

    Google Scholar 

  10. Courant, T.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courant, T., Weinstein, A.: Beyond Poisson structures. In Actions hamiltoniennes de groupes. Troisième théorème de Lie. Sémin. Sud-Rhodan. Géom. VIII (Lyon, 1986) Travaux en Cours, vol. 27, pp. 39–49, Hermann, Paris (1988)

    Google Scholar 

  12. Drinfeld, V.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268, 285–287 (1983); translation in Soviet Math. Dokl. 27, 68–71 (1983)

    Google Scholar 

  13. Drinfeld, V.: Quasi-Hopf algebras. Algebra i Analiz 1, 114–148 (1989); translation in Leningrad Math. J. 1, 1419–1457 (1990)

    Google Scholar 

  14. Ehresmann, C.: Catégories topologiques et catégories différentiables. Centre Belge Rech. Math. Colloque Géom. Différ. Globale (Bruxelles 1958) 137–150 (1959)

    Google Scholar 

  15. Ehresmann, C.: Sur les catégories différentiables. Atti Convegno internaz. Geom. Diff. (Bologna 1967) 31–40 (1970)

    Google Scholar 

  16. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. (2) 78, 267–288 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerstenhaber, M., Giaquinto, A.: Boundary solutions of the classical Yang–Baxter equation. Lett. Math. Phys. 40, 337–353 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hodges, T.J., Yakimov, M.: Triangular Poisson structures on Lie groups and symplectic reduction. In: Noncommutative Geometry and Representation Theory in Mathematical Physics. Contemporary Mathematics, vol. 391, pp. 123–134. Am. Math. Soc., Providence, RI (2005)

    Google Scholar 

  19. Huebschmann, J.: Poisson cohomology and quantization. J. Reine Angew. Math. 408, 57–113 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Huebschmann, J.: Higher homotopies and Maurer-Cartan algebras: quasi-Lie-Rinehart, Gerstenhaber, and Batalin-Vilkovisky algebras. In: Marsden, J., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 237–302. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  21. Jacobson, N.: On pseudo-linear transformations. Proc. Nat. Acad. Sci. USA 21, 667–670 (1935)

    Article  MATH  Google Scholar 

  22. Klimčík, C., Strobl, T.: WZW-Poisson manifolds. J. Geom. Phys. 43, 341–344 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. In: Mathematical Aspects of Classical Field Theory (Seattle 1991). Contemporary Mathematics, vol. 132, pp. 459–489. Am. Math. Soc., Providence, RI (1992)

    Google Scholar 

  24. Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41, 153–165 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kosmann-Schwarzbach, Y.: From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier (Grenoble) 46, 1243–1274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kosmann-Schwarzbach, Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kosmann-Schwarzbach, Y.: Quasi, twisted, and all that in Poisson geometry and Lie algebroid theory. In: Marsden, J., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 363–389. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  28. Kosmann-Schwarzbach, Y., Laurent-Gengoux, C.: The modular class of a twisted Poisson structure. Travaux Mathématiques (Luxembourg) 16, 315–339 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Kosmann-Schwarzbach, Y., Mackenzie, K.C.H.: Differential operators and actions of Lie algebroids. In: Voronov, T. (ed.) Quantization, Poisson Brackets and Beyond. Contemporary Mathematics, vol. 315, pp. 213–233. Amer. Math. Soc., Providence, RI (2002)

    Google Scholar 

  30. Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Nijenhuis structures. Ann. Inst. Henri Poincaré, Série A, 53, 35–81 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Kosmann-Schwarzbach, Y., Yakimov, M.: Modular classes of regular twisted Poisson structures on Lie algebroids. Lett. Math. Phys. 80, 183–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kostant, B., Sternberg, S.: Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras. Ann. Phys. 176, 49–113 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koszul, J.-L.: Crochet de Schouten–Nijenhuis et cohomologie. The Mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque, numéro hors série, 257–271 (1985)

    Google Scholar 

  34. Lecomte, P., Roger, C.: Modules et cohomologies des bigèbres de Lie. C. R. Acad. Sci. Paris Sér. I Math. 310, 405–410 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12, 253–300 (1977)

    Article  MATH  Google Scholar 

  36. Liu, Z.-J., Weinstein, A., Xu, P.: Manin triples for Lie bialgebroids. J. Diff. Geom. 45, 547–574 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. 39, 269–293 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Lu, J.-H.: Poisson homogeneous spaces and Lie algebroids associated to Poisson actions. Duke Math. J. 86, 261–304 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lu, J.-H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Diff. Geom. 31, 501–526 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mackenzie, K.C.H.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Mathematical Society Lecture Note Series, vol. 124. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  41. Mackenzie, K.C.H.: Lie algebroids and Lie pseudoalgebras. Bull. Lond. Math. Soc. 27, 97–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  43. Mackenzie, K.C.H., Xu, P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73, 415–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  45. Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux. C. R. Acad. Sci. Paris Sér. A–B, 264, A245–A248 (1967)

    Google Scholar 

  46. Roytenberg, D.: Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61, 123–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Roytenberg, D.: e.mail message (2007)

    Google Scholar 

  48. Saksida, P.: Lattices of Neumann oscillators and Maxwell-Bloch equations. Nonlinearity 19, 747–768 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ševera, P., Weinstein, A.: Poisson geometry with a 3-form background. In: Noncommutative Geometry and String Theory (Yokohama, 2001) Progr. Theoret. Phys. Suppl. 144, 145–154 (2001)

    Google Scholar 

  50. Stasheff, J.: Constrained Hamiltonians, BRS and homological algebra. In: Proceedings of the Conference on Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, 1986) Springer Lecture Notes in Mathematics, vol. 1326, pp. 150–160. Springer, Berlin (1988)

    Google Scholar 

  51. Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras. In: Quantum Groups (Leningrad, 1990) Lecture Notes in Mathematics, vol. 1510, pp. 120–137. Springer, Berlin (1992)

    Google Scholar 

  52. Stiénon, M., Xu, P.: Poisson quasi-Nijenhuis manifolds. Comm. Math. Phys. 270, 709–725 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stolin, A.: On rational solutions of Yang–Baxter equation for \(\mathfrak{s}\mathfrak{l}(n)\). Math. Scand. 69, 57–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  54. Terashima, Y.: On Poisson functions. J. Sympl. Geom. 6(1), 1–7 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vaintrob, A.: Lie algebroids and homological vector fields. Uspekhi Mat. Nauk 52, 2(314), 161–162 (1997); translation in Russ. Math. Surv. 52, 428–429 (1997)

    Google Scholar 

  56. Voronov, T.: Graded manifolds and Drinfeld doubles for Lie bialgebroids. In: Voronov, T. (ed.) Quantization, Poisson Brackets and Beyond. Contemporary Mathematics, vol. 315, pp. 131–168. Amer. Math. Soc., Providence, RI (2002)

    Chapter  Google Scholar 

  57. Xu, P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Comm. Math. Phys. 200, 545–560 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The main results of this paper were presented at the international conference “Higher Structures in Geometry and Physics” which was held in honor of Murray Gerstenhaber and Jim Stasheff at the Institut Henri Poincaré in Paris in January 2007. I am very grateful to the organizers, Alberto Cattaneo and Ping Xu, for the invitation to participate in this exciting conference.I thank Murray Gerstenhaber, Jim Stasheff, and Dmitry Roytenberg for their remarks and useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvette Kosmann-Schwarzbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kosmann-Schwarzbach, Y. (2011). Poisson and Symplectic Functions in Lie Algebroid Theory. In: Cattaneo, A., Giaquinto, A., Xu, P. (eds) Higher Structures in Geometry and Physics. Progress in Mathematics, vol 287. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4735-3_12

Download citation

Publish with us

Policies and ethics