Skip to main content

Graded Lie Algebras and Intersection Cohomology

  • Chapter
  • First Online:
Representation Theory of Algebraic Groups and Quantum Groups

Part of the book series: Progress in Mathematics ((PM,volume 284))

Abstract

Let ι be a homomorphism of the multiplicative group into a connected reductive algebraic group over C. Let G ι be the centralizer of the image ι. Let LG be the Lie algebra of G and let L n G (n integer) be the summands in the direct sum decomposition of LG determined by ι. Assume that n is not zero. For any G ι-orbit \(\mathcal{O}\) in L n G and any irreducible G ι-equivariant local system \(\mathcal{L}\) on \(\mathcal{O}\) we consider the restriction of some cohomology sheaf of the intersection cohomology complex of the closure of \(\mathcal{O}\) with coefficients in \(\mathcal{L}\) to another orbit \(\mathcal{O}^\prime\) contained in the closure of \(\mathcal{O}\). For any irreducible G ι-equivariant local system \(\mathcal{L}^\prime\) on \(\mathcal{O}^\prime\) we would like to compute the multiplicity of \(\mathcal{L}^\prime\) in that restriction. We present an algorithm which helps in computing that multiplicity.

To Toshiaki Shoji on the occasion of his 60th birthday

Mathematics Subject Classifications (2000): 20G99

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque 100 (1981)

    Google Scholar 

  2. N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser, Boston, 1997

    MATH  Google Scholar 

  3. P. Deligne, La conjecture de Weil,II, Publ.Math. IHES 52 (1980), 137–252

    MathSciNet  MATH  Google Scholar 

  4. N. Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo IA 34 (1987), 573–597

    MathSciNet  MATH  Google Scholar 

  5. G. Lusztig, Cuspidal local systems and graded Hecke algebras I, Publ. Math. IHES 67 (1984), 145–202

    Google Scholar 

  6. G. Lusztig, Cuspidal local systems and graded Hecke algebras II, Representations of Groups, ed. B.Allison et al., Canad. Math. Soc. Conf. Proc., vol.16, Amer. Math. Soc., RI, 1995, pp.217–275

    Google Scholar 

  7. G. Lusztig, Cuspidal local systems and graded Hecke algebras III, Represent. Theor. 6 (2002), 202–242

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Lusztig, Study of perverse sheaves arising from graded Lie algebras, Adv. Math. 112 (1995), 147–217

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Lusztig, Character sheaves on disconnected groups V, Represent. Theor. 8 (2004), 346–376

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Lusztig, Character sheaves on disconnected groups VIII, Represent. Theor. 10 (2006), 314–352

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Lusztig, Character sheaves on disconnected groups IX, Represent. Theor. 10 (2006), 352–379

    Google Scholar 

  13. E.B. Vinberg, Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vekt. Tenzor. Anal. 19 (1979), 155–177

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lusztig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lusztig, G. (2010). Graded Lie Algebras and Intersection Cohomology. In: Gyoja, A., Nakajima, H., Shinoda, Ki., Shoji, T., Tanisaki, T. (eds) Representation Theory of Algebraic Groups and Quantum Groups. Progress in Mathematics, vol 284. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4697-4_8

Download citation

Publish with us

Policies and ethics