Skip to main content

A Stochastic Model of Gene Regulation Using the Chemical Master Equation

  • Chapter
Mathematical Modeling of Biological Systems, Volume I

Summary

The chemical master equation in combination with chemical rate equations is used as a tool to study Markovian models of genetic regulatory networks in prokaryotes. States of the master equation represent the binding and unbinding of protein complexes to DNA, resulting in a gene being expressed or not expressed in a cell, while protein and substrate concentrations are represented by continuum variables which evolve via differential equations.

The model is applied to a moderately complex biological system, the switching mechanism of the Bacteriophage driven by competition between production of CI and Cro proteins. Numerical simulations of the model successfully move between lysogenic and lytic states as the host bacterium is stressed by the application of ultraviolet light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ptashne, M.: A Genetic Switch: Phage λ and Higher Organisms (second edition). Cell Press, Cambridge, Massachusetts (1992).

    Google Scholar 

  2. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comp. Biol., 9, 67–103 (2002).

    Article  Google Scholar 

  3. Booth, H.S., Burden, C.J., Hegland, M., Santoso, L.: Markov process modelling of gene regulation. Austr. Math. Soc. Gazette, 32, 31–41 (2005).

    MATH  MathSciNet  Google Scholar 

  4. Hasty, J., McMillen, D., Isaacs, F., Collins, J.J.: Computational studies of gene regulatory networks: in numero molecular biology. Nature, 2, 268–278 (2001).

    Google Scholar 

  5. Arkin, A., Ross, J., McAdams H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-Infected Escherichia coliCells. Genetics, 149, 1633–1648 (1998).

    Google Scholar 

  6. Kepler, T.B., Elston T.C.: Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J., 81, 3116–3136 (2001).

    Article  Google Scholar 

  7. Aurell, E., Brown, S., Johanson, J., Sneppen, K.: Stability puzzles in phage λ. Phys.Rev. E., 65, 051914 (2002).

    Article  Google Scholar 

  8. Judd E.M., Laub, M.T., McAdams H.H.: Toggles and oscillators: new genetic circuit designs. BioEssays, 22, 507–509 (2000).

    Article  Google Scholar 

  9. Elowitz M.B., Lelbler S.: A synthetic ocsillatory network of transcriptional regulators. Nature, 403, 335–338 (2000).

    Article  Google Scholar 

  10. Tian, T., Burrage, K.: Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage λ. J.Theor.Biol., 227, 229–237 (2004).

    Article  MathSciNet  Google Scholar 

  11. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, New York, USA (1981).

    MATH  Google Scholar 

  12. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA, 94, 814–819 (1997).

    Article  Google Scholar 

  13. Reinitz, J., Vaisnys, J.R.: Theoretical and experimental analysis of the phage lambda genetic switch missing levels of co-operativity. J. Theor. Biol., 145, 295–318 (1990).

    Article  Google Scholar 

  14. Hasty, J., Isaacs, F., Dolnik, M., McMillen, D., Collins, J.J.: Designer gene networks: Towards fundamental cellular control. Chaos, 11, 207–220 (2001).

    Article  MATH  Google Scholar 

  15. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22403–434 (1976).

    Article  MathSciNet  Google Scholar 

  16. Burz, D.S., Beckett, D., Benson, N., Ackers, G.K.: Self assembly of bacteriophage λ CI repressor: Effects of single site mutations on monomer-dimer equilibrium. Biochemistry, 33, 8399–8405 (1994).

    Article  Google Scholar 

  17. Darling, P.J., Holt, J.M., Ackers, G.K.: Coupled energetics of λ cro repressor self-assembly and site-specific DNA operator binding I: Analysis of cro dimerisation from nanomolar to micromolar concentations. Biochemistry, 33, 11500–11507 (2000).

    Article  Google Scholar 

  18. Ackers, G.K., Johnson, A.D., Shea, M.A.: Quantitative model for gene regulation by λ phage repressor. Proc. Nat. Acad. Sci., 79, 1129–1133 (1982).

    Article  Google Scholar 

  19. Darling, P.J., Holt, J.M., Ackers, G.K.: Coupled energetics of λ cro repressor self-assembly and site-specific DNA operator binding II: Cooperative interactions of cro dimers. J. Mol. Biol., 139, 163–194 (2000).

    Google Scholar 

  20. Berg, O.G., Winter, R.B., von hippel, P.H.: How do genome-regulatory proteins locate their DNA target sites? Trends Biochem., 7, 52–55 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Booth, H.S., Burden, C.J., Hegland, M., Santoso, L. (2007). A Stochastic Model of Gene Regulation Using the Chemical Master Equation. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_7

Download citation

Publish with us

Policies and ethics