Skip to main content

Could Low-Efficacy Malaria Vaccines Increase Secondary Infections in Endemic Areas?

  • Chapter
Mathematical Modeling of Biological Systems, Volume II

Summary

Recent breakthroughs in malaria vaccines have given new hope that a safe, effective malaria vaccine may be found. The following epidemiological questions are addressed: 1. What level of vaccination coverage is required to offset the limitations of an imperfect diseasemodifying vaccine? 2. Could the introduction of a low-efficacy malaria vaccine lead to an increase in the number of secondary infections? 3.What characteristics of such a vaccine will have the greatest effect on the outcome? A mathematical model is developed for a disease-modifying malaria vaccine that is given once prior to infection, and the minimum coverage level for disease eradication is established. There is a threshold depending on the relative rate of infection, the efficacy of the vaccine and the duration of infection. Vaccines which reduce the rate and duration of infection will always result in a decrease in secondary infections. More surprisingly, there is a duration “shoulder,” such that vaccines that increase the duration of infection slightly will still lead to a decrease in secondary infections, even if the rate of infection is unchanged. Beyond this, the number of secondary infections will increase unless the rate of infection is sufficiently lowered. This is critical for low-efficacy vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, P. L., Sacarlal, J., Aponte, J. J., Leach, A., Macete, E., Milman, J., Mandomando, I., Spiessens, B., Guinovart, C., Espasa,M., Bassat, Q., Aide, P., Ofori-Anyinam, O., Navia, M. M., Corachan, S., Ceuppens,M., Dubois, M. C., Demoitie,M. A., Dubovsky, F., Menendez, C., Tornieporth, N., Ballou, W. R., Thompson, R., Cohen, J.: Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet, 364, 1411–20 (2004).

    Article  Google Scholar 

  2. Aron, J. L.: Mathematical modeling of immunity to malaria. Math. Biosci., 90, 385–396 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  3. Aron, J. L., May, R. M.: The population dynamics of malaria. In: Anderson, R.M. (ed) The Population Dynamics of Infectious Diseases: Theory and Applications. Chapman & Hall, London (1982).

    Google Scholar 

  4. Blower, S. M., Koelle, K., Mills, J.: Health Policy Modeling: Epidemic Control, HIV Vaccines and Risky Behavior. In: Kaplan, E., Brookmeyer, R. (eds) Quantitative Evaluation of HIV Prevention Programs. Yale University Press, New Haven, CT (2002).

    Google Scholar 

  5. Boyd, M. F. (ed): Malariology, Saunders, Philadelphia (1949).

    Google Scholar 

  6. Desowitz, R. S.: Federal Bodysnatchers and the New Guinea Virus: Tales of Parasites, People and Politics. W.W. Norton & Company, New York (2002).

    Google Scholar 

  7. Heffernan, J. M., Smith, R. J., Wahl, L. M.: Perspectives on the basic reproductive ratio. J. R. Soc. Interface, 2, 281–293 (2005).

    Article  Google Scholar 

  8. Koella, J.: On the use of mathematical models of malaria transmission. Acta Trop., 49, 1–25 (1991).

    Article  Google Scholar 

  9. Mackinnon, M. J., Read, A. F.: The effects of host immunity on virulence-transmissibility relationship in the rodent malaria parasite Plasmodium chabaudi. Parasitology, 126, 103–112 (2003).

    Article  Google Scholar 

  10. Molineaux, L., Gramiccia, G.: The Garki Project: Research on the Epidemiology and Control of Malaria in the Sudan Savannah of West Africa. World Health Organization, Geneva (1980).

    Google Scholar 

  11. Moorthy, V. S., Good, M. F., Hill, A. V.: Malaria vaccine developments. Lancet., 363, 150–6 (2004).

    Article  Google Scholar 

  12. Pérignon, J. L., Druilhe, P.: Immune mechanisms underlying the premunition against Plasmodium falciparum malaria. Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 89, Suppl. II (1994).

    Google Scholar 

  13. Porco, T. C., Blower, S. M.: Designing HIV vaccination policies: Subtypes and crossimmunity. Interfaces, 28, 167–190 (1998).

    Article  Google Scholar 

  14. Porco, T. C., Blower, S. M.: HIV vaccines: The effect of the mode of action on the coexistence of HIV subtypes. Math. Pop. Studies, 8, 205–229 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  15. Smith, R. J., Blower, S. M.: Could disease-modifying HIV vaccines cause population-level perversity? Lancet Inf. Dis., 4, 636–639 (2004).

    Article  Google Scholar 

  16. van Boven, M., deMelker, H. E., Schellekens, J. F., Kretzschmar,M.: Waning immunity and sub-clinical infection in an epidemic model: Implications for pertussis in The Netherlands. Math Biosci., 164, 161–82 (2000).

    Article  MATH  Google Scholar 

  17. van de Perre, P., Dedet, J.-P.: Vaccine efficacy: winning a battle (not war) against malaria. Lancet, 364, 1411–1420 (2004).

    Article  Google Scholar 

  18. World Health Organisation, Roll Back Malaria infosheet: What is Malaria? http://malaria. who.int/cmc upload/0/000/015/372/RBMInfosheet 1.htm (accessed 26 May 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Smith, R.J. (2008). Could Low-Efficacy Malaria Vaccines Increase Secondary Infections in Endemic Areas?. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_1

Download citation

Publish with us

Policies and ethics