Skip to main content

Controller Design Based on the Fuzzy Hyperbolic Model

  • Chapter
Fuzzy Modeling and Fuzzy Control

Part of the book series: Control Engineering ((CONTRENGIN))

  • 2293 Accesses

Abstract

Fuzzy systems are naturally nonlinear. As the theory of fuzzy systems and the theory of nonlinear systems are not completely developed, universal control laws cannot easily be obtained for fuzzy/nonlinear control systems. However, it may be possible for us to design special controllers for a class of fuzzy/nonlinear systems. In this chapter, we introduce several techniques for controller design of nonlinear systems based on the fuzzy hyperbolic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. B. R. Barmish, “Stabilization of uncertain systems via linear control,” IEEE Transactions on Automatic Control, vol. 28, pp. 848–850, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Studies in Applied Mathematics, vol. 15, Philadelphia: SIAM, 1994.

    Google Scholar 

  3. S. G. Cao, N. W. Rees, and G. Feng, “Quadratic stability analysis and design of continuous-time fuzzy control systems,” International Journal of Systems Science, vol. 27, no. 2, pp. 193–203, 1996.

    Article  MATH  Google Scholar 

  4. S. L. Chang and T. K. C. Peng, “Adaptive guaranteed cost control of systems with uncertain parameters,” IEEE Transactions on Automatic Control, vol. 17, no. 4, pp. 474–483, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  5. Z. Gajic and M. T. J. Qureshi, Lyapunov Matrix Equation in System Stability and Control, New York: Academic Press, 1995.

    Book  Google Scholar 

  6. G. Garcia, B. Pradin, S. Tarbouriech, and F. Zeng, “Robust stabilization and guaranteed cost control for discrete-time linear systems by static output feedback,” Automatica, vol. 39, no. 9, pp. 1635–1641, Sept. 2003.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Kaszkurewicz and G. Bhaya, “A robust stability and diagonal Lyapunov function,” SIAM Journal on Matrix Analysis and Applications, vol. 14, no. 2, pp. 508–520, 1993.

    Article  MathSciNet  Google Scholar 

  8. F. L. Lewis and V. L. Syrmos, Optimal Control, New York: John Wiley, 1995.

    Google Scholar 

  9. I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Systems & Control Letters, vol. 8, pp. 351–357, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. R. Petersen and D. C. Farlane, “Optimal guaranteed cost control and filtering for uncertain linear systems,” IEEE Transactions on Automatic Control, vol. 39, pp. 1971–1977, 1994.

    Article  MATH  Google Scholar 

  11. Y. Quan and H. Zhang, “H 2 and H controller based on fuzzy hyperbolic model,” Control and Decision, vol. 15, no. 5, pp. 553–556, 2000. (in Chinese)

    Google Scholar 

  12. Y. Quan and H. Zhang, “Stability analysis and optimal control of fuzzy system,” Control Theory and Application, vol. 18, supplemental, pp. 19–22, 2001. (in Chinese)

    MATH  Google Scholar 

  13. Y. Quan and H. Zhang, “Modeling and control of a class of nonlinear system,” Control Theory and Application, vol. 18, no. 2, pp. 185–190, 2001. (in Chinese)

    MATH  Google Scholar 

  14. V. A. Ugrinovskii and I. R. Petersen, “Guaranteed cost control of uncertain systems via Lur’e-Postnikov Lyapunov functions,” Automatica, vol. 36, no. 2, pp. 279–285, Feb. 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Wang, L. Xie, and C. E. Souza, “Robust control of a class of uncertain nonlinear systems,” Systems & Control Letters, vol. 19, pp. 139–149, 1992.

    Article  MathSciNet  Google Scholar 

  16. L. Yu and F. Gao, “Optimal guaranteed cost control of discrete-time uncertain systems with both state and input delay,” Journal of the Franklin Institute, vol. 338, pp. 101–110, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Zhang and X. He, Fuzzy Adaptive Control Theory and its Applications, Beijing, China: Beijing University of Aeronautics and Aerospace Press, 2002. (in Chinese)

    Google Scholar 

  18. H. Zhang and Y. Quan, “Modeling and control based on fuzzy hyperbolic model,” ACTA Automatica Sinica, vol. 26, no. 6, pp. 729–735, 2000. (in Chinese)

    Google Scholar 

  19. H. Zhang and Y. Quan, “Modeling, identification and control of a class of nonlinear system,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 349–354, 2001.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

(2006). Controller Design Based on the Fuzzy Hyperbolic Model. In: Fuzzy Modeling and Fuzzy Control. Control Engineering. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4539-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4539-7_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4491-8

  • Online ISBN: 978-0-8176-4539-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics