Skip to main content

Mechanics in Tumor Growth

  • Chapter
Modeling of Biological Materials

Abstract

This chapter focuses on the mechanical aspects of tumor growth. After describing some of the main features of tumor growth and in particular the phenomena involving stress and deformation, the chapter deals with the multiphase framework recently developed to describe tumor growth and shows how the concept of evolving natural configurations can be applied to the specific problem. Some examples are then described according to the type of constitutive equation used, specifically focusing on contact inhibition of growth, nutrient-limited avascular growth, and interaction with the environment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J.A., and Bellomo, N., Eds. A Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston (1996).

    Google Scholar 

  2. Ambrosi, D., and Guana, F., Stress modulated growth, Math. Mech. Solids., (2005) at http://www.mms.sagepub.com/cgi/content/abstract/ 1081286505059739vl.

  3. Ambrosi, D., and Mollica, F., On the mechanics of a growing tumor, Int. J. Engng. Sci., 40 (2002), 1297–1316.

    Article  MathSciNet  Google Scholar 

  4. Ambrosi, D., and Mollica, F., The role of stress in the growth of a multicell spheroid, J. Math. Biol, 48 (2004), 477–499.

    Google Scholar 

  5. Ambrosi, D., and Preziosi, L., On the closure of mass balance models for tumor growth, Math. Mod. Meth. Appl. Sci. 12 (2002), 737–754.

    Article  MATH  MathSciNet  Google Scholar 

  6. Araujo, R.P., and McElwain, D.L.S., A history of the study of solid tumor growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039–1091.

    Article  MathSciNet  Google Scholar 

  7. Araujo, R.P., and McElwain, D.L.S., A mixture theory for the genesis of residual stresses in growing tissues, I: A general formulation, SIAM J. Appl. Math., 65 (2005), 1261–1284.

    Article  MATH  MathSciNet  Google Scholar 

  8. Araujo, R.P., and McElwain, D.L.S., A mixture theory for the genesis of residual stresses in growing tissues, II: Solutions to the biphasic equations for a multicell spheroid, SIAM J. Appl. Math., 65 (2005), 1285–1299.

    Article  MathSciNet  Google Scholar 

  9. Araujo, R.P., and McElwain, D.L.S., A linear-elastic model of anisotropic tumour growth, Eur. J. Appl. Math., 15 (2004), 365–384.

    Article  MATH  MathSciNet  Google Scholar 

  10. Baumgartner, W., Hinterdorfer, P., Ness, W., Raab, A., Vestweber, D., Schindler, H., and Drenckhahn, D., Cadherin interaction probed by atomic force microscopy, Proc. Nat. Acad. Sci. USA, 97 (2000), 4005–4010.

    Article  Google Scholar 

  11. Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R., and Hofler, H., E-cadherin gene mutation provide clues to diffuse gastric carcinoma, Cancer Res., 54 (1994), 3845–3852.

    Google Scholar 

  12. Bellomo, N., and De Angelis, E., Eds. Special issue on modeling and simulation of tumor development, treatment, and control, Math. Comp. Modeling, 37 (2003).

    Google Scholar 

  13. Blatz, P.J., and Ko, W.L., Application of finite elasticity theory to the deformation of rubbery materials, Trans. Soc. Rheology, 6 (1962), 223–251.

    Article  Google Scholar 

  14. Breward, C.J.W., Byrne, H.M., and Lewis, C.E., The role of cellcell interactions in a two-phase model for avascular tumor growth, J. Math. BioL, 45 (2002), 125–152.

    Article  MATH  MathSciNet  Google Scholar 

  15. Breward, C.J.W., Byrne, H.M., and Lewis, C.E., A multiphase model describing vascular tumor growth, Bull. Math. BioL, 65 (2003), 609–640.

    Article  Google Scholar 

  16. Brewster, C.E., Howarth, P.H., Djukanovic, R., Wilson, J., Holgate, S.T., and Roche, W.R., Myofibroblasts and subepithelial fibrosis in bronchial asthma, Am. J. Respir. Cell Mol. Biol., 3 (1990), 507–511.

    Google Scholar 

  17. Brown, L.F., Guidi, A.J., Schnitt, S.J., van de Water, L., Iruela-Arispe, M.L., Yeo, T.-K., Tognazzi, K., and Dvorak, H.F., Vascular stroma formation in carcinoma in situ, invasive carcinoma and metastatic carcinoma of the breast, Clin. Cancer Res., 5 (1999), 1041–1056.

    Google Scholar 

  18. Bussolino, F., Arese, M., Audero, E., Giraudo, E., Marchiò, S., Mitola, S., Primo, L., and Serini, G., Biological aspects of tumour angiogenesis, in: Cancer Modeling and Simulation, Preziosi, L., Ed., Boca Raton, FL: Chapman & Hall/CRC Press, 1–22 (2003).

    Google Scholar 

  19. Byrne, H.M., King, J.R., McElwain, D.L.S., and Preziosi, L., A twophase model of solid tumor growth, Appl. Math. Letters, 16 (2003), 567–573.

    Article  MATH  MathSciNet  Google Scholar 

  20. Byrne, H.M., and Preziosi, L., Modeling solid tumor growth using the theory of mixtures, Math. Med. Biol, 20 (2004), 341–366.

    Article  Google Scholar 

  21. Canetta, E., Leyrat, A., Verdier, C., and Duperray, A., Measuring cell viscoelastic properties using a force-spectrometer: Influence of the protein-cytoplasm interactions, Biorheology, 42 (2005), 321–333.

    Google Scholar 

  22. Carmeliet, P., and Jain, R.K., Angiogenesis in cancer and other diseases, Nature, 407 (2000), 249–257.

    Article  Google Scholar 

  23. Castilla, M.A., Arroyo, M.V.A., Aceituno, E., Aragoncillo, P., Gonzalez-Pacheco, F.R., Texeiro, E., Bragado, R., and Caramelo, C., Disruption of cadherin-related junctions triggers autocrine expression of vascular endothelial growth factor in bovine aortic endothelial cells. Effect on cell proliferation and death resistance, Circ. Res., 85 (1999), 1132–1138.

    Google Scholar 

  24. Cavallaro, U., Schaffhauser, B., and Christofori, G., Cadherin and the tumor progression: Is it all in a switch?, Cancer Lett., 176 (2002), 123–128.

    Article  Google Scholar 

  25. Caveda, L., Martin-Padura, I., Navarro, P., Breviario, F., Corada, M., Gulino, D., Lampugnani, M.G., and Dejana, E., Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin), J. Clin. Invest., 98 (1996), 886–893.

    Article  Google Scholar 

  26. Chambers, A.F., and Matrisian, L.M., Changing views of the role of matrix metalloproteinases in metastasis, J. Natl. Cancer Inst., 89 (1997), 1260–1270.

    Article  Google Scholar 

  27. Chaplain, M.A.J., Ed. Special issue Math. Mod. Methods Appl. Sci., 9 (1999).

    Google Scholar 

  28. Chaplain, M.A.J., Ed. Special issue on Mathematical Modeling and Simulations of Aspects of Cancer Growth, J. Theor. Med., 4 (2002).

    Google Scholar 

  29. Chaplain, M.A.J., Mathematical Modelling of Tumour Growth, Springer, New York (2006).

    Google Scholar 

  30. Chaplain, M., Graziano, L., and Preziosi, L., Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006) 197–229.

    Article  MATH  Google Scholar 

  31. Chiquet, M., Matthisson, M., Koch, M., Tannheimer, M., and Chiquet-Ehrismann, R., Regulation of extracellular matrix synthesis by mechanical stress, Biochem. Cell Biol., 74 (1996), 737–744.

    Article  Google Scholar 

  32. Christofori, G., and Semb, H., The role of cell-adhesion molecule E-cadherin as a tumors-suppressor gene, Trends Biochem. Sci., 24 (1999), 73–76.

    Article  Google Scholar 

  33. Coats, S., Flanagan, W.M., Nourse, J., and Roberts, J., Requirement of p27kipl for restriction point control of the fibroblast cell cycle, Sctence, 272 (1996), 877–880.

    Google Scholar 

  34. Craft, P.S., and Harris, A.L., Clinical prognostic-significance of tumor angiogenesis, Annals of Oncology, 5 (1994), 305–311.

    Google Scholar 

  35. Dejana, E., Lampugnani, M.G., Giorgi, M., Gaboli, M., and Marchisio, P.C., Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor, Blood, 75 (1990), 1509–1517.

    Google Scholar 

  36. Deleu, L., Fuks, F., Spitkovsky, D., Hörlein, R., Faisst, S., and Rommelaere, J., Opposite transcriptional effects of cyclic AMP-responsive elements in confluent or p27kip-overexpressing cells versus serum-starved or growing cells, Molec. Cell. Biol., 18 (1998), 409–419.

    Google Scholar 

  37. Dietrich, C., Wallenfrang, K., Oesch, F., and Wieser, R., Differences in the mechanisms of growth control in contact-inhibited and serumdeprived human fibroblasts, Oncogene, 15 (1997), 2743–2747.

    Article  Google Scholar 

  38. Dorie, M.J., Kallman, R.F., Rapacchietta, D.F., Van Antwerp, D., and Huang, Y.R., Migration and internalisation of cells and polystyrene microspheres in tumour cell spheroids, Exp. Cell. Res., 141 (1982), 201–209.

    Article  Google Scholar 

  39. Dorie, M.J., Kallman, R.F., and Coyne, M.A., Effect of Cytochalasin B Nocodazole on migration and internalisation of cells and microspheres in tumour cells, Exp. Cell Res., 166 (1986), 370–378.

    Article  Google Scholar 

  40. Elliot, C.M., The Stefan problem with a non-monotone constitutive relation, IMA J. Appl. Math., 35 (1985), 257–264.

    Article  MATH  MathSciNet  Google Scholar 

  41. Eyre, D.R., Biochemistry of the invertebral disk, Int. Rev. Connect. Tissue Res., 8 (1979), 227–291.

    Google Scholar 

  42. Folkman, J., Tumor angiogenesis, Adv. Cancer Res., 19 (1974), 331–358.

    Google Scholar 

  43. Folkman, J., and Hochberg, M., Self-regulation of growth in three dimensions, J. Exp. Med., 138 (1973), 745–753.

    Article  Google Scholar 

  44. Franks, S.J., Byrne, H.M., King, J.R., Underwood, J.C.E., and Lewis, C.E., Modelling the early growth of ductal carcinoma in situ of the breast, J. Math. Biol., 47 (2003), 424–452.

    Article  MATH  MathSciNet  Google Scholar 

  45. Franks, S.J., Byrne, H.M., Mudhar, H.S., Underwood, J.C.E., and Lewis, C.E., Mathematical modelling of comedo ductal carcinoma in situ of the breast, Math. Med. Biol., 20 (2003), 277–308.

    Article  MATH  Google Scholar 

  46. Franks, S.J., and King, J.R., Interactions between a uniformly proliferating tumor and its surrounding. Uniform material properties, Math. Med. Biol., 20 (2003), 47–89.

    Article  MATH  Google Scholar 

  47. Freyer, J.P., and Sutherland, R.M., Regulation of growth saturation and development of necrosis in EMT6/R0 multicellular spheroids by the glucose and oxygen supply, Cancer Res., 46 (1986), 3504–3512.

    Google Scholar 

  48. Gottardi, C.J., Wong, E., and Gumbiner, B.M., E-cadherin suppresses cellular transformation by inhibiting β-catenin signalling in an adhesion-independent manner, J. Cell. Biol., 153 (2001), 1049–1060.

    Article  Google Scholar 

  49. Harja, K.M., and Fearon, E.R., Cadherin and catenin alterations in human cancer, Genes Chromosomes Cancer, 34 (2002), 255–268.

    Article  Google Scholar 

  50. Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., and Jain, R.K., Solid stress inhibits the growth of multicellular tumour spheroids, Nature Biotech., 15 (1997), 778–783.

    Article  Google Scholar 

  51. Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., and Jain, R.K., Solid stress inhibits the growth of multicellular tumor spheroids, Nature Biotech., 15 (1997), 778–783.

    Article  Google Scholar 

  52. Hillen, T., Hyperbolic models for chemosensitive movement, Math. Mod. Meth. Appl. Sci., 12 (2002), 1007–1034.

    Article  MATH  MathSciNet  Google Scholar 

  53. Jackson, T.L., and Byrne, H.M., A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumours to chemotherapy, Math. Biosci., 164 (2000), 17–38.

    Article  MATH  MathSciNet  Google Scholar 

  54. Johnson, P.R.A., Role of human airway smooth muscle in altered extracellular matrix production in asthma, Clin. Exp. Pharm. Physiol., 28 (2001), 233–236.

    Article  Google Scholar 

  55. Jones, A.F., Byrne, H.M., Gibson, J.S., and Dold, J.W., A mathematical model of the stress induced during solid tumour growth, J. Math. Biol., 40 (2000), 473–499.

    Article  MATH  MathSciNet  Google Scholar 

  56. Kato, A., Takahashi, H., Takahashi, Y., and Matsushime, H., Inactivation of the cyclin D-dependent kinase in the rat fibroblast cell line, 3Y1, induced by contact inhibition, J. Biol. Chem., 272 (1997), 8065–8070.

    Article  Google Scholar 

  57. Kim, S.-G., Akaike, T., Sasagawa, T., Atomi, Y., and Kurosawa, H., Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells, Cell Struct. Funct., 27 (2002), 139–144.

    Article  Google Scholar 

  58. Kjaer, M., Role of extracellular matrix in adaptation of tendons and skeletal muscle to mechanical loading, Physiol. Rev., 84 (2004), 649–698.

    Article  Google Scholar 

  59. Klominek, J., Robert, K.H., and Sundqvist, K.-G., Chemotaxis and haptotaxis of human malignant mesothelioma cells: Effects of fibronectin, laminin, type IV collagen, and an autocrine motility factor-like substance, Cancer Res., 53 (1993), 4376–4382.

    Google Scholar 

  60. Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl, 305 (2005), 566–588.

    Article  MATH  MathSciNet  Google Scholar 

  61. Lawrence, J.A., and Steeg, P.S., Mechanisms of tumor invasion and metastasis, World J. Urol., 14 (1996), 124–130.

    Article  Google Scholar 

  62. Levenberg, S., Yarden, A., Kam, Z., and Geiger, B., p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry, Oncogene, 18 (1999), 869–876.

    Article  Google Scholar 

  63. Levick, J.R., Flow through interstitium and other fibrous matrices, Q. J. Cogn. Med. Sci., 72 (1987), 409–438.

    Google Scholar 

  64. Liotta, L.A., and Kohn, E.C., The microenvironment of the tumorhost interface, Nature, 411 (2001), 375–379.

    Article  Google Scholar 

  65. MacKenna, D., Summerour, S.R., and Villarreal, F.J., Role of mechanical factors inmodulatin cardiac fibroblast function and extracellular matrix synthesis, Cardiovasc. Res., 46 (2000), 257–263.

    Article  Google Scholar 

  66. Mantzaris, N., Webb, S., and Othmer, H.G., Mathematical modelling of tumour-induced angiogenesis, J. Math. Biol. 49 (2004), 111–187 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  67. Mao, J.J., and Nah, H.-D., Growth and development: Hereditary and mechanical modulations, Amer. J. Orthod. Dentofac. Orthop., 125 (2004), 676–689.

    Article  Google Scholar 

  68. Matrisian, L.M., The matrix-degrading metalloproteinases, Bioessays, 14 (1992), 455–463.

    Article  Google Scholar 

  69. Maurice, D.M., The cornea and the sciera, in The Eye, Davson, H., Ed., Academic Press, (1984) 1–158.

    Google Scholar 

  70. Mow, V.C., Holmes, M.H., and Lai, W.M., Fluid transport and mechanical problems of articular cartilage: A review, J. Biomech., 17 (1984), 377–394.

    Article  Google Scholar 

  71. Mow, V.C. and Lai, W.M., Mechanics of animal joints, Ann. Rev. Fluid Mech., 11 (1979), 247–288.

    Article  Google Scholar 

  72. Nelson, CM., and Chen, C.S., VE-cadherin simultaneously stimulates ad inhibits cell proliferation by altering cytoskeletal structure and tension, J. Cell Science, 116 (2003), 3571–3581.

    Article  Google Scholar 

  73. Oda, T., Kanai, Y., Okama, T., Yoshiura, K., Shimoyama, Y., Birchmeier, W., Sugimura, T., and Hirohashi, S., E-cadherin gene mutation in human gastric carcinoma cell lines, Proc. Natl. Acad. Sci. USA, 91 (1994), 1858–1862.

    Article  Google Scholar 

  74. Orford, K., Orford, C.C., Byers, S.W., Exogenous expression of β-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest, J. Cell Biol. 146 (1999), 855–867.

    Article  Google Scholar 

  75. Painter, K., and Hillen, T., Volume filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501–543.

    MATH  MathSciNet  Google Scholar 

  76. Parson, S.L., Watson, S.A., Brown, P.D., Collins, H.M., and Steele, R.J.C., Matrix metalloproteinases, Brit. J. Surg., 84 (1997), 160–166.

    Article  Google Scholar 

  77. Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., and Weaver, V.M., Tensional homeostasis and the malignant phenotype, Cancer Cell 8 (2005), 241–254.

    Article  Google Scholar 

  78. Polyak, K., Kato, J., Solomon, M.J., Sherr, C.J., Massague, J., Roberts, J.M., and Kofi, A., p27Kipl, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest, Genes & Develop., 8 (1994), 9–22.

    Article  Google Scholar 

  79. Preziosi, L., Ed., Cancer Modelling and Simulation, CRC-Press/ Chapman Hall, Boca Raton, Fl (2003).

    MATH  Google Scholar 

  80. Preziosi, L., and Farina, A., On Darcy’s law for growing porous media, Int. J. Nonlinear Mech., 37 (2001), 485–491.

    Article  Google Scholar 

  81. Pujuguet, P., Hammann, A., Moutet, M., Samuel, J.L., Martin, F., and Martin, M., Expression of fibronectin EDA+ and EDB+ isoforms by human and experimental colorectal cancer, Am. J. Patho., 148 (1996), 579–592.

    Google Scholar 

  82. Rao, I.J., Humphrey, J.D., and Rajagopal, K.R., Biological growth and remodeling: A uniaxial example with possible application to tendons and ligaments, CMES, 4 (2003), 439–455.

    MATH  Google Scholar 

  83. Risinger, J.I., Berchuck, A., Kohler, M.F., and Boyd, J., Mutation of E-cadherin gene in human gynecological cancers, Nature Genetics, 7 (1994), 98–102.

    Article  Google Scholar 

  84. Secomb, T.W., and El-Kareh, A.W., A theoretical model for the elastic properties of very soft tissues, Biorheology, 38 (2001), 305–317.

    Google Scholar 

  85. St. Croix, B., Sheehan, C., Rak, J.W., Florenes, V.A., Slingerland, J.M., and Kerbel, R.S., E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27 (Kipl), J. Cell Biol, 142 (1998), 557–571.

    Article  Google Scholar 

  86. Stetler-Stevenson, W.G., Hewitt, R., and Corcoran, M., Matrix metallo-proteinases and tumor invasion: Prom correlation to causality to the clinic, Cancer Biol., 7 (1996), 147–154.

    Article  Google Scholar 

  87. Stockinger, A., Eger, A., Wolf, J., Beug, H., and Foisner, R., E-cadherin regulates cell growth by modulating proliferationdependent β-catenin transcriptional activity, J. Cell. Biol., 152 (2001), 1185–1196.

    Article  Google Scholar 

  88. Sutherland, R.M., Cell and environment interactions in tumor microregions: The multicell spheroid model, Science, 240 (1988), 177–184.

    Article  Google Scholar 

  89. Takeuchi, T., Misaki, A., Liang, S.-B., Tachibana, A., Hayashi, N., Sonobe, H., and Ohtsuki Y., Expression of T-cadherin (CDH13, H-cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells, J. Neurochem., 74 (2000), 1489–1497.

    Article  Google Scholar 

  90. Takeuchi, J., Sobue, M., Sato, E., Shamoto, M., and Miura, K., Variation in glycosaminoglycan components of breast tumors, Cancer Res., 36 (1976), 2133–2139.

    Google Scholar 

  91. Tseng, S.C.G., Smuckler, D., and Stern, R., Comparison of collagen types in adult and fetal bovine corneas, J. Biol. Chem., 257 (1982), 2627–2633.

    Google Scholar 

  92. Tzukatani, Y., Suzuki, K., and Takahashi, K., Loss of densitydependent growth inhibition and dissociation of α-catenin from E-cadherin, J. Cell. Physiol., 173 (1997), 54–63.

    Article  Google Scholar 

  93. Tzukita, S., Itoh, M., Nagafuchi, A., Yonemura, S., and Tsukita, S., Submembrane junctional plaque proteins include potential tumor suppressor molecules, J. Cell Biol., 123 (1993), 1049–1053.

    Article  Google Scholar 

  94. Uglow, E.B., Angelini, G.D., and George, S.J., Cadherin expression is altered during intimai thickening in humal sapphenous vein, J. Submicrosc. Cytol. Pathol. 32 (2000), C113–C119.

    Google Scholar 

  95. Uglow, E.B., Slater, S., Sala-Newby, G.B., Aguilera-Garcia, CM., Angelini, G.D., Newby, A.C., and George, S.J., Dismantling of cadherin-mediated cell-cell contacts modulates smooth muscle cell proliferation, Circ. Res., 92 (2003), 1314–1321.

    Article  Google Scholar 

  96. Warchol, M.E., Cell proliferation and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear, J. Neurosci., 22 (2002), 2607–2616.

    Google Scholar 

  97. Witelski, T.P., Shocks in nonlinear diffusion, Appl. Math. Lett., 8 (1995), 27–32.

    Article  MATH  MathSciNet  Google Scholar 

  98. Woo, S.L.-Y., Biomechanics of tendon and ligaments, in Frontiers in Biomechanics, G. W. Schmid-Schonbein, S. L.-Y. Woo and Zweifach, B.W., Eds., Springer-Verlag, New York, 180–195 (1986).

    Google Scholar 

  99. Yang, C.-M., Chien, C.-S., Yao, C.-C., Hsiao, L.-D., Huang, Y.-C., and Wu, C.B., Mechanical strain induces collagenases-3 (MMP-13) expression in MC3T3-E1 osteoblastic cells, J. Biol. Chemistry, 279 (2004), 22158–22165.

    Article  Google Scholar 

  100. Zhang, Y., Nojima, S., Nakayama, H., Yulan, J., and Enza, H., Characteristics of normal stromal components and their correlation with cancer occurrence in human prostate, Oncol. Rep., 10 (2003), 207–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Graziano, L., Preziosi, L. (2007). Mechanics in Tumor Growth. In: Mollica, F., Preziosi, L., Rajagopal, K.R. (eds) Modeling of Biological Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4411-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4411-6_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4410-9

  • Online ISBN: 978-0-8176-4411-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics