Skip to main content

Apoptosis in Normal and Pathological Vessels

  • Chapter
Biology of the Arterial Wall

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 1))

  • 123 Accesses

Abstract

Vascular pathologists have long been intrigued by the observation of a form of active vascular cell death within the arterial wall in atherosclerosis [1, 2] or during normal aging [3] in the absence of overt necrosis. Rational explanations for these observations may now be at hand after the description by Kerr and colleagues in the early 1970s of a novel form of cell death distinct from necrosis, which they designated “apoptosis” (from the Greek word for falling) [4]. It has since been increasingly recognized that apoptosis may be involved in a number of critical events occurring during normal development and may play a key role in a wide variety of diseases [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Virchow R. Cellular Pathology as Based Upon Physiological and Pathological Histology, ed 2. Birmingham, AL, Classics of Medicine Library, 1858: 361.

    Google Scholar 

  2. Thomas WA, Reiner JM, Florentin FA, Lee KT, Lee WM. Population dynamics of arterial smooth muscle cells. V. Cell proliferation and cell death during initial three months in atherosclerotic lesions induced in swine by hypercholesterolemic diet and intimai trauma. Exp Mol Pathol. 1976;24:360–374.

    PubMed  CAS  Google Scholar 

  3. Cliff WJ. The aortic tunica media in aging rats. Exp Mol Pathol. 1970;13:172–189.

    PubMed  CAS  Google Scholar 

  4. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J cancer. 1972;26:239–257.

    PubMed  CAS  Google Scholar 

  5. Hetts SW. To die or not to die. An overview of apoptosis and its role in disease. JAMA. 1998;279:300–307.

    PubMed  CAS  Google Scholar 

  6. Martin SJ, Reutelingsperger CPM, McGahon AJ, Rader JA, van Schie RCA, LaFace DM, Green DR. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182:1545–1556.

    PubMed  CAS  Google Scholar 

  7. Majno G, Joris I. Apoptosis, oncosis, and necrosis. Am J Pathol. 1995;146:3–15.

    PubMed  CAS  Google Scholar 

  8. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998;82:1111–1129.

    PubMed  CAS  Google Scholar 

  9. Green DR. Apoptotic pathways: the roads to ruin. Cell. 1998;94:695–698.

    PubMed  CAS  Google Scholar 

  10. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179:1317–1330.

    PubMed  CAS  Google Scholar 

  11. Tan EM. Autoimmunity and apoptosis. J Exp Med. 1994; 179:1083–1086.

    PubMed  CAS  Google Scholar 

  12. Rosen A, Casciola-Rosen L, Ahearn J. Novel packages of viral and self-antigens are generated during apoptosis. J Exp Med. 1995;181:1557–1561.

    PubMed  CAS  Google Scholar 

  13. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunology Today. 1997; 18:44–51.

    PubMed  CAS  Google Scholar 

  14. Golstein P. Controlling cell death. Science. 1997;275:1081–1082.

    PubMed  CAS  Google Scholar 

  15. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–1311.

    PubMed  CAS  Google Scholar 

  16. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–1308.

    PubMed  CAS  Google Scholar 

  17. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science. 1994;266:1821–1828.

    PubMed  CAS  Google Scholar 

  18. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389:300–305.

    PubMed  CAS  Google Scholar 

  19. Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol. 1998;8:267–271.

    PubMed  CAS  Google Scholar 

  20. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–1316.

    PubMed  CAS  Google Scholar 

  21. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997;3:614–620.

    PubMed  CAS  Google Scholar 

  22. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T-T, Yu VL, Miller DK. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37–43.

    PubMed  CAS  Google Scholar 

  23. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998;391:96–99.

    PubMed  CAS  Google Scholar 

  24. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.

    PubMed  CAS  Google Scholar 

  25. Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, Henson PM. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol. 1992;149:4029–4035.

    PubMed  CAS  Google Scholar 

  26. Savill J, Fadok V, Henson P, Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunol Today. 1993;14:131–136.

    PubMed  CAS  Google Scholar 

  27. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature. 1998;392:505–509.

    PubMed  CAS  Google Scholar 

  28. Kaiser D, Freyberg MA, Friedl P. Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun. 1997;231:586–590.

    PubMed  CAS  Google Scholar 

  29. Dimmeler S, Haendeler J, Nehls M, Zeiher AM. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med. 1997; 185:601–607.

    PubMed  CAS  Google Scholar 

  30. Dimmeler S, Assmus B, Hermann C, Haendeler J, Zeiher AM. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res. 1998;83:334–341.

    PubMed  CAS  Google Scholar 

  31. Dimmeler S, Haendeler J, Rippmann V, Nehls M, Zeiher AM. Shear stress inhibits apoptosis of human endothelial cells. Febs Lett. 1996;399:71–74.

    PubMed  CAS  Google Scholar 

  32. Hermann C, Zeiher AM, Dimmeler S. Shear stress inhibits H2O2-induced apoptosis of human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase. Arterioscler Thromb Vasc Biol. 1997;17:3588–3592.

    PubMed  CAS  Google Scholar 

  33. Hessler JL, Robertson AL, Chisolm GM. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells inculture. Atherosclerosis. 1979;32:213–229.

    PubMed  CAS  Google Scholar 

  34. Lizard G, Deckert V, Dubrez L, Moisant M, Gambert P, Lagrost L. Induction of apoptosis in endothelial cells treated with cholesterol oxides. Am J Pathol. 1996;148:1625–1638.

    PubMed  CAS  Google Scholar 

  35. Dimmeler S, Haendeler J, Galle J, Zeiher AM. Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases: A mechanistic clue to the response to injury’ hypothesis. Circulation. 1997;95:1760–1763.

    PubMed  CAS  Google Scholar 

  36. Escargueil-Blanc I, Meilhac O, Pieraggi M-T, Arnal J-F, Salvayre R, Nègre-Salvayre A. Oxidized LDLs induce massive apoptosis of cultured human endothelial cells through a calcium-dependent pathway: prevention by aurintricarboxylic acid. Arterioscler Thromb Vasc Biol. 1997; 17:331–339.

    PubMed  CAS  Google Scholar 

  37. Harada-Shiba M, Kinoshita M, Kamido H, Shimokado K. Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J Biol Chem. 1998;273:9681–9687.

    PubMed  CAS  Google Scholar 

  38. Lindner H, Holler E, Ertl B, Multhoff G, Schreglmann M, Klauke I, Schultz-Hector S, Eissner G. Peripheral blood mononuclear cells induce programmed cell death in human endothelial cells and may prevent repair: role of cytokines. Blood. 1997;89:1931–1938.

    PubMed  CAS  Google Scholar 

  39. Haendeler J, Zeiher AM, Dimmeler S. Vitamin C and E prevent lipopolysaccharide-induced apoptosis in human endothelial cells by modulation of Bcl-2 and Bax. Kur J Pharmacol. 1996;317:407–411.

    CAS  Google Scholar 

  40. Karsan A, Yee E, Kaushansky K, Harlan JM. Cloning of a human Bcl-2 homologue: Inflammatory cytokines induce human Al in cultured endothelial cells. Blood. 1996;87:3089–3096.

    PubMed  CAS  Google Scholar 

  41. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-KappaB. Science. 1996, 274:787–789.

    PubMed  Google Scholar 

  42. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards III CK, Schuchman EH, Fuks Z, Kolesnick R. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med. 1997;186:1831–1841.

    PubMed  CAS  Google Scholar 

  43. Howard M, Muchamel T, Andrade S, Menon S. Interleukin 10 protects mice from lethal endotoxemia. J Exp Med. 1993;177:1205–1208.

    PubMed  CAS  Google Scholar 

  44. Meredith J, Fazeli B, Schwartz M. The extracellular matrix as a survival factor. Mol Biol Cell. 1993;4:953–961.

    PubMed  CAS  Google Scholar 

  45. Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol. 1994; 127:537–546.

    PubMed  CAS  Google Scholar 

  46. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu TH, Klier G, Cheresh DA. Integrin alpha(v)beta(3) antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157–1164.

    PubMed  CAS  Google Scholar 

  47. Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA. Suppression of p53 and p21 expression by vascular cell integrin avβ3 during angiogenesis in vivo. J Clin Invest. 1996, 98:426–433.

    PubMed  CAS  Google Scholar 

  48. Rüegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin avβ3 in the disruption of the tumor vasculature induced by TNF and IFN-g. Nat Med. 1998;4:408–413.

    PubMed  Google Scholar 

  49. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med. 1995;1:1024–1028.

    PubMed  CAS  Google Scholar 

  50. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA. 1997;94:8761–8766.

    PubMed  CAS  Google Scholar 

  51. Watanabe Y, Dvorak HF. Vascular permeability factor/vascular endothelial growth factor inhibits anchorage-disruption-induced apoptosis in microvessel endothelial cells by inducing scaffold formation. Exp Cell Res. 1997;233:340–349.

    PubMed  CAS  Google Scholar 

  52. Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 1995, 55:5687–5692.

    PubMed  CAS  Google Scholar 

  53. Karsan A. Tumor necrosis factor and endothelial cell death. Trends Cardiovasc Med. 1998;8:19–24.

    CAS  Google Scholar 

  54. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and Al in vascular endothelial cells. J Biol Chem. 1998;273:13313–13316.

    PubMed  CAS  Google Scholar 

  55. Karsan A, Yee E, Poirier GG, Zhou P, Craig R, Harlan JM. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2 dependent and independent mechanisms. Am J Pathol. 1997;151:1775–1784.

    PubMed  CAS  Google Scholar 

  56. Spyridopoulos I, Sullivan AB, Kearney M, Isner JM, Losordo DW. Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis. Estradiol as a survival factor. Circulation. 1997;95:1505–1514.

    PubMed  CAS  Google Scholar 

  57. Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995;95:2266–2274.

    PubMed  CAS  Google Scholar 

  58. Fox JC, Shanley JR. Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem. 1996;271:12578–12584.

    PubMed  CAS  Google Scholar 

  59. Morishita R, Gibbons GH, Ellison KE, Lee W, Zhang LN, Yu H, Kaneda Y, Ogihara T, Dzau VJ. Evidence for direct local effect of angiotensin in vascular hypertrophy: in vivo gene transfer of angiotensin converting enzyme. J Clin Invest. 1994, 94:978–984.

    PubMed  CAS  Google Scholar 

  60. von der Leyen H, Gibbons GH, Morishita R, Lewis NP, Zhang L, Kaneda Y, Cooke JP, Dzau VJ. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Nail Acad Sci USA. 1995;92:1137–1141.

    Google Scholar 

  61. Pollman MJ, Yamada T, Horiuchi M, Gibbons GH. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res. 1996;79:748–756.

    PubMed  CAS  Google Scholar 

  62. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vase Biol. 1996; 16:19–27.

    CAS  Google Scholar 

  63. Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17:2200–2208.

    PubMed  CAS  Google Scholar 

  64. Leszczynski D, Zhao Y, Luokkamäki M, Foegh ML. Apoptosis of vascular smooth muscle cells. Protein kinase C and oncoprotein Bcl-2 are involved in regulation of apoptosis in non-transformed rat vascular smooth muscle cells. Am J Pathol. 1994;145:1265–1270.

    PubMed  CAS  Google Scholar 

  65. Baker AH, Zaltsman AB, George SJ, Newby AC. Divergent effects of tissue inhibitor of metalloproteinase-1,-2 or-3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. J Clin Invest. 1998; 101:1478–1487.

    PubMed  CAS  Google Scholar 

  66. Joringe S, Crisby M, Thyberg J, Nilsson J. DNA fragmentation and ultrustructural changes of degenerating cells in atherosclerotic lesions and smooth muscle cells exposed to oxidized LDL in vitro. Arterioscler Thromb Vasc Biol. 1997; 17:2225–2231.

    Google Scholar 

  67. Nishio E, Watanabe Y. Oxysterols induced apoptosis in cultured smooth muscle cells through CPP32 protease activation and BCL-2 protein downregulation. Biochem Biophys Res Commun. 1996;226:928–934.

    PubMed  CAS  Google Scholar 

  68. Tsai JC, Jain M, Hsieh CM, Lee WS, Yoshizumi M, Patterson C, Perrella MA, Cooke C, Wang H, Haber E, Schlegel R, Lee ME. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J Biol Chem. 1996;271:3667–3670.

    PubMed  CAS  Google Scholar 

  69. Bennett MR, Evan GI, Newby AC. Deregulated expression of the c myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-g, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res. 1994;74:525–536.

    PubMed  CAS  Google Scholar 

  70. Bennett MR, Evan GI, Schwartz SM. Apoptosis of rat vascular smooth muscle cells is regulated by p53-dependent and-independent pathways. Circ Res. 1995;77:266–273.

    PubMed  CAS  Google Scholar 

  71. Parkes JL, Cardell RR, Hubbard FCJ, Hubbard D, Meltzer A, Penn A. Cultured human atherosclerotic plaque smooth muscle cells retain transforming potential and display enhanced expression of the myc protooncogene. Am J Pathol. 1991;138:765–775.

    PubMed  CAS  Google Scholar 

  72. Bennett MR, Littlewood TD, Schwartz SM, Weissberg PL. Increased sensitivity of human vascular smooth muscle cells from atherosclerotic plaques to p53-mediated apoptosis. Circ Res. 1997;81:591–599.

    PubMed  CAS  Google Scholar 

  73. Bennett MR, Macdonald K, Chan SW, Boyle JJ, Weissberg PL. Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circ Res. 1998;82:704–712.

    PubMed  CAS  Google Scholar 

  74. Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell. 1993;74:453–462.

    PubMed  CAS  Google Scholar 

  75. Meeson A, Palmer M, Calfon M, Lang R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development. 1996; 122:3929–3938.

    PubMed  CAS  Google Scholar 

  76. Slomp J, Gittenbergerdegroot AC, Glukhova MA, Vanmunsteren JC, Kockx MM, Schwartz SM, Koteliansky VE. Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vascr Biol. 1997;17:1003–1009.

    CAS  Google Scholar 

  77. Cho A, Courtman DW, Langille BL. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res. 1995;76:168–175.

    PubMed  CAS  Google Scholar 

  78. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell. 1992;69:119–128.

    PubMed  CAS  Google Scholar 

  79. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995;91:2703–2711.

    PubMed  CAS  Google Scholar 

  80. Geng Y-J, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-lβ-converting enzyme. Am J Pathol. 1995;147:251–266.

    PubMed  CAS  Google Scholar 

  81. Han DKM, Haudenschild CC, Hong MK, Tinkle BT, Leon MB, Liau G. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol. 1995;147:267–277.

    PubMed  CAS  Google Scholar 

  82. Kockx MM, Demeyer GRY, Muhring J, Butt H, Bultinck J, Herman AG. Distribution of cell replication and apoptosis in atherosclerotic plaques of cholesterol-fed rabbits. Atherosclerosis. 1996;120:115–124.

    PubMed  CAS  Google Scholar 

  83. Björkerud S, Björkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol. 1996; 149:367–380.

    PubMed  Google Scholar 

  84. Hegyi L, Skepper JN, Cary NR, Mitchinson MJ. Foam cell apoptosis and the development of the lipid core of human atherosclerosis. J Pathol. 1996; 180:423–442.

    PubMed  CAS  Google Scholar 

  85. Mallat Z, Ohan J, Lesèche G, Tedgui A Colocalization of CPP-32 with apoptotic cells in human atherosclerotic plaques. Circulation. 1997;96:424–428.

    PubMed  CAS  Google Scholar 

  86. Cai W, Devaux B, Schaper W, Schaper J. The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis. 1997;131:177–186.

    PubMed  CAS  Google Scholar 

  87. Kockx MM, De Meyer GRY, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998;97:2307–2315.

    PubMed  CAS  Google Scholar 

  88. Bauriedel G, Schluckebier S, Hutter R, Welsch U, Kandolf R, Lüderitz B, Prescott MF. Apoptosis in restenosis versus stable-angina atherosclerosis. Implications for the pathogenesis of restenosis. Arterioscler Thromb Vasc Biol. 1998;18:1132–1139.

    PubMed  CAS  Google Scholar 

  89. Mallat Z, Heymes C, Ohan J, Faggin E, Lesèche G, Tedgui A Expression of interleukin-10 in human atherosclerotic plaques. Relation to inducible nitric oxide synthase expression and cell death. Arterioscler Thromb Vasc Biol. 1999;(in press).

    Google Scholar 

  90. Gordon D, Reidy MA, Benditt EP, Schwartz SM. Cell proliferation in human coronary arteries. Proc NatlAcad Sci USA. 1990;87:4600–4604.

    CAS  Google Scholar 

  91. Brandi R, Richter T, Haug K, Wilhelm MG, Maurer PC, Nathrath W. Topographic analysis of proliferative activity in carotid endarterectomy specimens by immunocytochemical detection of the cell cycle-related antigen Ki-67. Circulation. 1997, 96:3360–3368.

    Google Scholar 

  92. Dong C, Wilson JE, Winters GL, B.M. M. Human transplant coronary artery disease: pathological evidence for Fas-mediated apoptotic cytotoxicity in allograft arteriopathy. Lab Invest. 1996;74:921–931.

    PubMed  CAS  Google Scholar 

  93. Han DKM, Wright ME, Dixit VM, Pruit R, Son Soe M, Lynch DH, Schwartz SM. Evidence for escape of apoptosis by a loss of Fas in atherosclerotic plaque smooth muscle cells. Circulation. 1996;94(suppl I):1–397.

    Google Scholar 

  94. Miossec C, Dutilleul V, Fassy F, Diuhercend A. Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation. J Biol Chem. 1997;272:13459–13462.

    PubMed  CAS  Google Scholar 

  95. Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, Ivanhoe R, George BS, Fintel D, Weston M, et al. Randomized trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators. Lancet. 1994;343:881–886.

    PubMed  CAS  Google Scholar 

  96. Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med. 1998;4:222–227.

    PubMed  CAS  Google Scholar 

  97. Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood. 1997;89:2429–2442.

    PubMed  CAS  Google Scholar 

  98. Flynn PD, Byrne CD, Baglin TP, Weissberg PL, Bennett MR. Thrombin generation by apoptotic vascular smooth muscle cells. Blood. 1997;89:4378–4384.

    PubMed  CAS  Google Scholar 

  99. Bach R, Gentry R, Nemerson Y. Factor VII binding to tissue factor in reconstituted phospholipid vesicles: induction of cooperativity by phosphatidylserine. Biochemistry. 1986;25:4007–4020.

    PubMed  CAS  Google Scholar 

  100. Mallat Z, Hugel B, Ohan J, Lesèche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques. A role for apoptosis in plaque thrombogenicity. Circulation. 1999;99:(in press).

    Google Scholar 

  101. Perlman H, Maillard L, Krasinski K, Walsh K. Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation. 1997;95:981–987.

    PubMed  CAS  Google Scholar 

  102. Bochaton-Piallat ML, Gabbiani F, Redard M, Desmoulière A, Gabbiani G. Apoptosis participates in cellularity regulation during rat aortic intimai thickening. Am J Pathol. 1995;146:1059–1064.

    PubMed  CAS  Google Scholar 

  103. Speir E, Modali R, Huang ES, Leon MB, Shawl F, Finkel T, Epstein SE. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science. 1994;265:391–394.

    PubMed  CAS  Google Scholar 

  104. Steg PG, Tahlil O, Aubailly N, Caillaud JM, Dedieu JF, Berthelot K, Le Roux A, Feldman L, Perricaudet M, Denefle P, Branellec D. Reduction of restenosis after angioplasty in an atheromatous rabbit model by suicide gene therapy. Circulation. 1997, 96:408–411.

    PubMed  CAS  Google Scholar 

  105. Sata M, Perlman H, Muruve DA, Silver M, Ikebe M, Libermann TA, Oettgen P, Walsh K. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sci USA. 1998;95:1213–1217.

    PubMed  CAS  Google Scholar 

  106. Hamet P, Moreau P, Dam TV, Orlov SN, Tea BS, Deblois D, Tremblay J. The time window of apoptosis: A new component in the therapeutic strategy for cardiovascular remodeling. J Hypertens. 1996;14:S65–S70.

    CAS  Google Scholar 

  107. Gobe G, Browning J, Howard T, Hogg N, Winterford C, Cross R. Apoptosis occurs in endothelial cells during hypertension-induced microvascular rarefaction. J Struct Biol. 1997;118:63–72.

    PubMed  CAS  Google Scholar 

  108. Diez J, Panizo A, Hernandez M, Pardo J. Is the regulation of apoptosis altered in smooth muscle cells of adult spontaneously hypertensive rats? Hypertension. 1997;29:776–780.

    PubMed  CAS  Google Scholar 

  109. Deblois D, Tea BS, Dam TV, Tremblay J, Hamet P. Smooth muscle apoptosis during vascular regression in spontaneously hypertensive rats. Hypertension. 1997;29:340–349.

    PubMed  CAS  Google Scholar 

  110. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest. 1996;97:2883–2890.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mallat, Z., Tedgui, A. (1999). Apoptosis in Normal and Pathological Vessels. In: Levy, B.I., Tedgui, A. (eds) Biology of the Arterial Wall. Basic Science for the Cardiologist, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-38146-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-38146-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8458-8

  • Online ISBN: 978-0-585-38146-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics