Skip to main content
  • 193 Accesses

Abstract

Once a pathogen has penetrated the body there are two possible sites where replication can occur and where host defenses can mount a counterattack, namely, in intracellular or extracellular compartments. It is the job of B cells and the humoral arm of the immune system to manage the battle against extracellular stages of infection, to minimize the spread of infection, to antibody-label extracellular organisms and inactivate or target them for destruction, and to provide mechanisms of specific capture of antigen for presentation and support of T-cell responses—thereby providing a critical link between the humoral and cell-mediated arms of the immune system. The production of large amounts of clonotypic antibodies, or immunoglobulins (Ig), that both form membrane surface receptors and are secreted from B cells, is the cornerstone of the humoral response. The immunoglobulins are thus noted for their ability both to function as surface receptors on cells and to act as critical soluble mediators of adaptive immunity in blood and lymph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenberg, A. S., Steiner, L., Kasahara, M., and Flajnik, M. F. 1993. Isolation of a shark immunoglobulin light chain cDNA clone encoding a protein resembling mammalian kappa light chains: Implications for the evolution of light chains. Proc. Natl. Acad. Sci. USA 90:10603–10607.

    PubMed  CAS  Google Scholar 

  2. Chen, J., and Alt, F. W. 1993. Gene rearrangement and B-cell development. Curr. Opin. Immunol. 5:194–200.

    PubMed  CAS  Google Scholar 

  3. Maki, R., Roeder, W., Traunecker, A., Sidman, C., Wabl, M., Raschke, W., and Tonegawa, S. 1981. The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin delta genes. Cell 24:353–365.

    PubMed  CAS  Google Scholar 

  4. Haas, I. G., and Wabl, M. 1983. Immunoglobulin heavy chain binding protein. Nature 306:387–389.

    PubMed  CAS  Google Scholar 

  5. Sitia, R., Neuberger, M. S., and Milstein, C. 1987. Regulation of membrane IgM expression in secretory B cells: Translational and post-translational events. EMBO J. 6:3969–3977.

    PubMed  CAS  Google Scholar 

  6. Laussoued, K., Illges, H., Benlagha, K., and Cooper, M. D. 1996. Fate of surrogate light-chains in B-lineage cells. J. Exp. Med. 183:421–429.

    Google Scholar 

  7. Shirasawa, T., Ohnishi, K., Hagiwara, S., Shigemoto, K., Takebe, Y., Rajewsky, K., and Takemori, T. 1993. A novel gene product associated with mu chains in immature B cells. EMBO J. 12:1827–1834.

    PubMed  CAS  Google Scholar 

  8. Grupp, S. A., Mitchell, R. N., Schreiber, K. L, McKean, D. J., and Abbas, A. K. 1995. Molecular mechanisms that control expression of the B lymphocyte antigen receptor complex. J. Exp. Med. 181:161–168.

    PubMed  CAS  Google Scholar 

  9. Melnick, J., Aviel, S., and Argon, Y. 1992. The endoplasmic reticulum stress protein GRP94. in addition to BiP. associates with unassembled immunoglobulin chains. J. Biol. Chem. 267:21303–21306.

    PubMed  CAS  Google Scholar 

  10. Melnick, J., Dul, J. L., and Argon, Y. 1994. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370:373–375.

    PubMed  CAS  Google Scholar 

  11. Brouns, G. S., de Vries, E., and Borst J. 1995. Assembly and intracellular transport of the human B cell antigen receptor complex. Int. Immunol. 7:359–368.

    PubMed  CAS  Google Scholar 

  12. Melnick, J., and Argon, Y. 1995. Molecular chaperones and the biosynthesis of antigen receptors. Immunol. Today 16:243–250.

    PubMed  CAS  Google Scholar 

  13. von Schwedler, U., Jaeck, H. M., and Wabl, M. 1990, Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature 345:452–456.

    Google Scholar 

  14. Snapper, C. M., and Mond, J. J. 1993. Towards a comprehensive view of immunoglobulin class switching. Immunol. Today 14:15–17.

    PubMed  CAS  Google Scholar 

  15. Harriman, W., Volk, H., Defranoux, N., and Wabl, M. 1993. Immunoglobulin class switch recombination. Annu. Rev. Immunol. 11:361–384.

    PubMed  CAS  Google Scholar 

  16. Stavnezer, J., Abbott, J., and Sirlin, S. 1984. Immunoglobulin heavy chain switching in cultured 1.29 murine B lymphoma cells: Commitment to an IgA or IgE switch. Curr. Top. Microbiol. Immunol. 113:109–116.

    PubMed  CAS  Google Scholar 

  17. Yancopoulos, G. D., DePinho, R. A., Zimmerman, K. A., Lutzker, S. G., Rosenberg, N., and Alt, F. W. 1986. Secondary genornic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 5:3259–3266.

    PubMed  CAS  Google Scholar 

  18. Stavnezer, J., Radcliffe, G., Lin, Y. C, Nietupski, J., Berggren, L., Sitia, R., and Severinson, E. 1988. Immunoglobulin heavy-chain switching may be directed by prior induction of transcripts from constant-region genes. Proc. Natl. Acad. Sci. USA 85:7704–7708.

    PubMed  CAS  Google Scholar 

  19. Malisan, F., Briere, F., Bridon, J. M., Harindranath, N., Mills, F. C, Max, E. E., Banchereau, J., and Martinezvaldez, H. 1996. Interleukin-10 induces immunoglobulin-G isotype switch recombination in human CD40-activated naive B-lymphocytes. J. Exp. Med. 183:937–947.

    PubMed  CAS  Google Scholar 

  20. Daniels, G. A., and Lieber, M. R. 1995. Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences. Proc. Natl. Acad. Sci. USA 92:5625–5629.

    PubMed  CAS  Google Scholar 

  21. Michaelson, J. S., Singh, M., Snapper, C. M., Sha, W. C, Baltimore, D., and Birshtein, B. K. 1996. Regulation of 3’-lgH enhancers by a common set of factors, including kappa-B-binding proteins. J. Immunol. 156:2828–2839.

    PubMed  CAS  Google Scholar 

  22. Yancopoulos, G. D., and Alt, F. W. 1986. Regulation of the assembly and expression of variable-region genes. Annu. Rev. Immunol. 4:339–368.

    PubMed  CAS  Google Scholar 

  23. Cook, G. P., Tomlinson, I. M., Walter, G., Riethman, H., Carter, N. P., Buluwela, L., Winter, G., and Rabbitts, T. H. 1994. A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome 14q. Nat. Genet. 7:162–168.

    PubMed  CAS  Google Scholar 

  24. Tomlinson, I. M., Cook, G. P., Carter, N. P., Elaswarapu, R., Smith, S., Walter, G., Buluwela, L., Rabbins, T. H., and Winter, G. 1994. Human immunoglobulin VH and D segments on chromosomes 15qll.2 and 16pll.2. Hum. Mol. Genet. 3:853–860.

    PubMed  CAS  Google Scholar 

  25. van Dijk, K. W., Mortari, F., Kirkham, P. M., Schroeder, H. W., Jr., and Milner, E. C. 1993. The human immunoglobulin VH7 gene family consists of a small, polymorphic group of six to eight gene segments dispersed throughout the VH locus. Eur. J. Immunol 23:832–839.

    PubMed  Google Scholar 

  26. Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y., and Honjo, T. 1986. Organization and evolution of variable region genes of the human immunoglobulin heavy chain. J. Mol. Biol. 190:529–541.

    PubMed  CAS  Google Scholar 

  27. Berman, J. E., Mellis, S. J., Pollock, R., Smith, C. L., Suh, H., Heinke, B., Kowal, C, Surti, U., Chess, L., Cantor, C. R., and Alt, F. 1988. Content and organization of the human Ig VH locus: Definition of three new VH families and linkage to the Ig CH locus. EMBO J. 7:727–738.

    PubMed  CAS  Google Scholar 

  28. Matsuda, F., Shin, E. K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Takaishi, S., Imai, T., Riley, J. H., Anand, R., Soeda, E., and Honjo, T. 1993. Structure and physical map of 64 variable segments in the 3’ 0.8-megabase region of the human immunoglobulin heavy-chain locus. Nat. Genet. 3:88–94.

    PubMed  CAS  Google Scholar 

  29. Kofler, R., Geley, S., Kofler, H., and Helmberg, A. 1992. Mouse variable-region gene families: Complexity, polymorphism and use in non-autoimmune responses. Immunol. Rev. 128:5–21.

    PubMed  CAS  Google Scholar 

  30. Rathbun, G. A., Capra, J. D., and Tucker, P. W. 1987. Organization of the murine immunoglobulin VH complex in the inbred strains. EMBO J. 6:2931–2937.

    PubMed  CAS  Google Scholar 

  31. Blankcnstein, T., and Krawinkel, U. 1987. Immunoglobulin VH region genes of the mouse are organized in overlapping clusters. Eur. J. Immunol. 17:1351–1357.

    Google Scholar 

  32. Haino, M., Hayashida, H., Miyata, T., Shin, E. K., Matsuda, F., Nagaoka, H., Matsumura, R., Takaishi, S., Fukita, Y., Fujikura, J., and Honjo, T. 1994. Comparison and evolution of human immunoglobulin VH segments located in the 3’ 0.8-megabase region. Evidence for unidirectional transfer of segmental gene sequences. J. Biol. Chem. 269:2619–2626.

    PubMed  CAS  Google Scholar 

  33. Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Malsumura, R., Haino, M., Shin, E. K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E., and Honjo, T. 1994. Recent translocation of variable and diversity segments of the human immunoglobulin heavy chain from chromosome 14 to chromosomes 15 and 16. Genomics 22:189–197.

    PubMed  CAS  Google Scholar 

  34. Kocher, H. P., Bijlenga, R. K., and Jaton, J. C. 1982. Biosynthesis and structure of membrane and secretory immunoglobulins. Mol. Cell Biochem. 47:11–22.

    PubMed  CAS  Google Scholar 

  35. Rogers, J., Choi, E., Souza, L., Carter, C, Word, C, Kuehl, M., Eisenberg, D., and Wall, R. 1981. Gene segments encoding transmembrane carboxyl termini of immunoglobulin gamma chains. Cell 26:19–27.

    PubMed  CAS  Google Scholar 

  36. Tsurushita, N., and Korn, L. J. 1987. Effects of intron length on differential processing of mouse mu heavychain mRNA. Mol. Cell. Biol. 7:2602–2605.

    PubMed  CAS  Google Scholar 

  37. Watakabe, A., Tanaka, K., and Shimura, Y. 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.

    PubMed  CAS  Google Scholar 

  38. Tanaka, K., Watakabe, A., and Shimura, Y. 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol 14:1347–1354.

    PubMed  CAS  Google Scholar 

  39. Tsurushita, N., Avdalovic, N. M., and Korn, L. J. 1987. Regulation of differential processing of mouse immunoglobulin mu heavy-chain mRNA. Nucleic Acids Res. 15:4603–4615.

    PubMed  CAS  Google Scholar 

  40. Zachau, H. G. 1993. The immunoglobulin kappa locus—or—what has been learned from looking closely at one-tenth of a percent of the human genome. Gene 135:167–173.

    PubMed  CAS  Google Scholar 

  41. Malcolm, S., Barton, P., Murphy, C, Ferguson-Smith, M. A., Bentley, D. L., and Rabbitts, T. H. 1982. Localization of human immunoglobulin kappa light chain variable region genes to the short arm of chromosome 2 by in situ hybridization. Proc. Natl. Acad. Sci. USA 79:4957–4961.

    PubMed  CAS  Google Scholar 

  42. McBride, O. W., Hieter, P. A., Hollis, G. F., Swan, D., Otey, M. C, and Leder, P. 1982. Chromosomal location of human kappa and lambda immunoglobulin light chain constant region genes. J. Exp. Med. 155:1480–1490.

    PubMed  CAS  Google Scholar 

  43. Demaison, C, David, D., and Theze, J. 1995. Analysis of the human vh gene repertoire expressed by peripheral CD19(+) B-cells reveals a strong bias usage in normal and pathological situations. FASEB J. 9:PA1032.

    Google Scholar 

  44. Arnold, N., Wienberg, J., Ermert, K., and Zachau, H. G. 1995. Comparative mapping of DNA probes derived from the V-K immunoglobulin gene regions on human and great ape chromosomes by fluorescence in-situ hybridization. Genomics 26:147–150.

    PubMed  CAS  Google Scholar 

  45. Zocher, I., Roschenthaler, F., Kirschbaum, T., Schable, K. F., Horlein, R., Fleischmann, B., Kofler, R., Geley, S., Hameister, H., and Zachau, H. G. 1995. Clustered and interspersed gene families in the mouse immunoglobulin-chi locus. Eur. J. Immunol. 25:3326–3331.

    PubMed  CAS  Google Scholar 

  46. Chen, J., Trounstine, M., Kurahara, C, Young, F., Kuo, C. C, Xu, Y., Loring, J. F., Alt, F. W., and Huszar, D. 1993. B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMBO J. 12:821–830.

    PubMed  CAS  Google Scholar 

  47. Zou, Y. R., Takeda, S., and Rajewsky, K. 1993. Gene targeting in the Ig kappa locus: Efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. EMBO J. 12:811–820.

    PubMed  CAS  Google Scholar 

  48. Vasicek, T. J., and Leder, P. 1990. Structure and expression of the human immunoglobulin lambda genes. J. Exp. Med. 172:609–620.

    PubMed  CAS  Google Scholar 

  49. Ramsden, D. A., and Wu, G. E. 1991. Mouse kappa light-chain recombination signal sequences mediate recombination more frequently than do those of lambda light chain. Proc. Natl. Acad. Sci. USA 88:10721–10725.

    PubMed  CAS  Google Scholar 

  50. Conn, M., and Langman, R. E. 1990. The protection: The unit of humoral immunity selected by evolution. Immunol. Rev. 115:11–147.

    Google Scholar 

  51. Sanchez, P., Drapier, A. M., Cohen Tannoudji, M, Colucci, E., Babinet, C, and Cazenave, P. A 1994. Compartmentalization of lambda subtype expression in the B cell repertoire of mice with a disrupted or normal C kappa gene segment. Int. Immunol. 6:711–719.

    PubMed  CAS  Google Scholar 

  52. Takeda, S., Zou, Y. R., Bluethmann, H., Kitamura, D., Muller, U., and Rajewsky, K. 1993. Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in cis but not lambda chain gene rearrangement in trans. EMBO J. 12:2329–2336.

    PubMed  CAS  Google Scholar 

  53. Giachino, C., Padovan, E., and Lanzavecchia, A. 1995. Kappa(+)lambda(+) dual receptor B-cells are present in the human peripheral repertoire. J. Exp. Med. 181:1245–1250.

    PubMed  CAS  Google Scholar 

  54. Victor, K. D., and Capra, J. D. 1994. An apparently common mechanism of generating antibody diversity-Length variation of the VL-JL junction. Mol. Immunol. 31:39–46.

    PubMed  CAS  Google Scholar 

  55. Gilfillan, S., Bachmann, M., Trembleau, S., Adorini, L., Kalinke, U., Zinkernagel, R., Benoist, C. and Mathis, D. 1995. Efficient immune responses in mice lacking N-region diversity. Eur. J. Immunol. 25:3115–3122.

    PubMed  CAS  Google Scholar 

  56. Kwan, S. P., Max, E. E., Seidman, J. G., Leder, P., and Scharff, M. D. 1981. Two kappa immunoglobulin genes are expressed in the myeloma S107. Cell 26:57–66.

    PubMed  CAS  Google Scholar 

  57. Ritchie, K. A., Brinster, R. L., and Storb, U. 1984. Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in kappa transgenic mice. Nature 312:517–520.

    PubMed  CAS  Google Scholar 

  58. Storb, U. 1987. Transgenic mice with immunoglobulin genes. Annu. Rev. Immunol. 5:151–174.

    PubMed  CAS  Google Scholar 

  59. Gay, D., Saunders, T., Camper, S., and Weigert, M. 1993. Receptor editing: An approach by auloreaclive B cells to escape tolerance. J. Exp. Med. 177:1009–1020.

    Google Scholar 

  60. Tiegs, S. L., Russell, D. M., and Nemazee, D. 1993. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177:1009–1020.

    CAS  Google Scholar 

  61. Prak, E. L., and Weigert, M. 1995. Light chain replacement: A new model for antibody gene rearrangement. J. Exp. Med. 182:541–548.

    PubMed  CAS  Google Scholar 

  62. Prak, E. L., Trounstine, M., Huszar, D., and Weigert, M. 1994. Light chain editing in kappa-deficient animals: A potential mechanism of B cell tolerance. J. Exp. Med. 180:1805–1815.

    PubMed  CAS  Google Scholar 

  63. Ferradini, L., Gu, H., Desmet, A., Rajewsky, K., Reynaud, C. A., and Weill, J. C. 1996. Rearrangement-enhancing element upstream of the mouse immunoglobulin-kappa chain J-cluster. Science 271:1416–1420.

    PubMed  CAS  Google Scholar 

  64. Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G., and LeFranc, M. P. 1990. Definition of the human immunoglobulin variable lambda (IGLV) gene subgroups. Eur. J. Immunol. 20:1317–1325.

    PubMed  CAS  Google Scholar 

  65. Williams, S. C, and Winter, G. 1993. Cloning and sequencing of human immunoglobulin V lambda gene segments. Eur. J. Immunol. 23:1456–1461.

    PubMed  CAS  Google Scholar 

  66. Stiernholm, N. B., Kuzniar, B., and Berinstein, N. L. 1994. Identification of a new human V lambda gene family V lambda X. J. Immunol. 152:4969–4975.

    PubMed  CAS  Google Scholar 

  67. Frippiat, J. P., Williams, S. C, Tomlinson, I. M., Cook, G. P., Cherif, D., Lepaslier, D., Collins, J. E., Dunham, I., Winter, G., and LeFranc, M. P. 1995. Organization of the human-immunoglobulin lambda-light-chain locus on chromosome 22q11.2. Hum. Mol. Genet. 4:983–991.

    PubMed  CAS  Google Scholar 

  68. Lai, E., Wilson, R. K., and Hood, L. E. 1989. Physical maps of the mouse and human immunoglobulin-like loci. Adv. Immunol. 46:1–59.

    PubMed  CAS  Google Scholar 

  69. Combriato, G., and Klobeck, H. G. 1991. V lambda and J lambda-C lambda gene segments of the human immunoglobulin lambda light chain locus are separated by 14 kb and rearrange by a deletion mechanism. Eur. J. Immunol. 21:1513–1522.

    PubMed  CAS  Google Scholar 

  70. Asenbauer, H., and Klobeck, H. G. 1996. Tissue-specific deoxyribonuclease 1-hypersensitive sites in the vicinity of the immunoglobulin c-lambda cluster of man. Eur. J. Immunol. 26:142–150.

    PubMed  CAS  Google Scholar 

  71. Arakawa, H., Shimizu, T., and Takeda, S. 1996. Reevaluation of the probabilities for productive rearrangements on the kappa-loci and lambda-loci. Int. Immunol. 8:91–99.

    PubMed  CAS  Google Scholar 

  72. Picard, D., and Schaffner, W. 1984. A lymphocyte-specific enhancer in the mouse immunoglobulin kappa gene. Nature 307:80–82.

    PubMed  CAS  Google Scholar 

  73. Banerji, J., Olson, L., and Schaffner, W. 1983. A lymphocyte specific enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729–740.

    PubMed  CAS  Google Scholar 

  74. Korholz, D., Gerdau, S., Enczmann, J., Zessack, N., and Burdach, S. 1992. Interleukin 6-induced differentiation of a human B cell line into IgM-secreting plasma cells is mediated by c-fos. Eur. J. Immunol. 22:607–610.

    PubMed  CAS  Google Scholar 

  75. Doglio, L., Kim, J. Y., Bozek, G., and Storb, U. 1994. Expression of lambda and kappa genes can occur in all B cells and is initiated around the same pre-B-cell developmental stage. Dev. Immunol. 4:13–26.

    PubMed  CAS  Google Scholar 

  76. Eisenbeis, C. F., Singh, H., and Storb, U. 1993. PU. 1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer. Mol. Cell. Biol. 13:6452–6461.

    PubMed  CAS  Google Scholar 

  77. Blomberg, B. B., Rudin, C. M, and Storb, U. 1991. Identification and localization of an enhancer for the human lambda L chain Ig gene complex. J. Immunol. 147:2354–2358.

    PubMed  CAS  Google Scholar 

  78. Boudinot, P., Drapier, A. M., Cazenave, P. A., and Sanchez, P. 1994. Conserved distribution of lambda subtypes from rearranged gene segments to immunoglobulin synthesis in the mouse B cell repertoire. Eur. J. Immunol. 24:2013–2017.

    PubMed  CAS  Google Scholar 

  79. Boudinot, P., Cazenave, P. A., Sanchez, P., Schlissel, M. S., and Morrow, T. 1994. Conserved distribution of lambda subtypes from rearranged gene segments to immunoglobulin synthesis in the mouse B-cell repertoire Ig heavy-chain protein controls B-cell development by regulating germ-line transcription and retargeting V(D)J recombination. Eur. J. Immunol. 153:1645–1657.

    Google Scholar 

  80. Boudinot, P., Rueffjuy, D., Drapier, A. M, Cazenave, P. A., and Sanchez, P. 1995. Various V-J rearrangement efficiencies shape the mouse-lambda B-cell repertoire. Eur. J. Immunol. 25:2499–2505.

    PubMed  CAS  Google Scholar 

  81. Kudo, A., and Melchers, F. 1987. A second gene, VpreB in the lambda 5 locus of the mouse, which appears to be selectively expressed in pre-B lymphocytes. EMBO J. 6:2267–2272.

    PubMed  CAS  Google Scholar 

  82. Kudo, A., Sakaguchi, N., and Melchers, F. 1987. Organization of the murine lg-related lambda 5 gene transcribed selectively in pre-B lymphocytes. EMBO J. 6:103–107.

    PubMed  CAS  Google Scholar 

  83. Tsubata, T., and Reth, M. 1990. The products of pre-B cell-specific genes (lambda 5 and VpreB) and the immunoglobulin mu chain form a complex that is transported onto the cell surface. J. Exp. Med. 172:973–976.

    PubMed  CAS  Google Scholar 

  84. Karasuyama, H., Rolink, A., Shinkai, Y., Young, F., Alt, F. W., and Melchers, F. 1994. The expression of Vpre-B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77:133–143.

    PubMed  CAS  Google Scholar 

  85. Sakaguchi, N., and Melchers, F. 1986. Lambda 5, a new light-chain-related locus selectively expressed in pre-B lymphocytes. Nature 324:579–582.

    PubMed  CAS  Google Scholar 

  86. Melchers, F., Karasuyama, H., Haasner, D., Bauer, S., Kudo, A., Sakaguchi, N., Jameson, B., and Rolink, A. 1993. The surrogate light chain in B-cell development. Immunol. Today 14:60–68.

    PubMed  CAS  Google Scholar 

  87. Rolink, A., Karasuyama, H., Haasner, D., Grawunder, U., Martensson, I. L., Kudo, A., and Melchers, F. 1994. Two pathways of B-lymphocyte development in mouse bone marrow and the roles of surrogate L chain in this development. Immunol. Rev. 137:185–201.

    PubMed  CAS  Google Scholar 

  88. Karasuyama, H., Kudo, A., and Melchers, F. 1990. The proteins encoded by the VpreB and lambda 5 pre-B cell-specific genes can associate with each other and with mu heavy chain. J. Exp. Med. 172:969–972.

    PubMed  CAS  Google Scholar 

  89. Jongstra, J., and Misener, V. 1993. Developmental maturation of the B-cell antigen receptor. Immunol. Rev. 132:107–123.

    PubMed  CAS  Google Scholar 

  90. Misener, V., Downey, G. P., and Jongstra, J. 1991. The immunoglobulin light chain related protein lambda 5 is expressed on the surface of mouse pre-B cell lines and can function as a signal transducing molecule. Int. Immunol. 3:1129–1136.

    PubMed  CAS  Google Scholar 

  91. Takemori, T., Mizuguchi, J., Miyazoe, I., Nakanishi, M., Shigemoto, K., Kimoto, H., Shirasawa, T., Maruyama, N., and Taniguchi, M. 1990. Two types of mu chain complexes are expressed during differentiation from pre-B to mature B cells. EMBO J. 9:2493–2500.

    PubMed  CAS  Google Scholar 

  92. Okabe, T., Bauer, S. R., and Kudo, A. 1992. Pre-B lymphocyte-specific transcriptional control of the mouse VpreB gene. Eur. J. Immunol. 22:31–36.

    PubMed  CAS  Google Scholar 

  93. Martensson, I. L., and Melchers, F. 1994. Pre-B cell-specific lambda 5 gene expression due to suppression in non pre-B cells. Int. Immunol. 6:863–872.

    PubMed  CAS  Google Scholar 

  94. Yang, J., Glozak, M. A., and Blomberg, B. B. 1995. Identification and localization of a developmental stage-specific promoter activity from the murine lambda 5 gene. J. Immunol. 155:2498–2514.

    PubMed  CAS  Google Scholar 

  95. Melchers, F., Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., Ghia, P., and Andersson, J. 1995. Positive and negative selection events during B-lymphopoiesis. Curr. Opin. Immunol. 7:214–227.

    PubMed  CAS  Google Scholar 

  96. Kitamura, D., and Rajewsky, K. 1992. Targeted disruption of mu chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356:154–156.

    PubMed  CAS  Google Scholar 

  97. Loffert, D., Ehlich, A., Muller, W., and Rajewsky, K. 1996. Surrogate light-chain expression is required to establish immunoglobulin heavy-chain allelic exclusion during early B-cell development. Immunity 4:133–144.

    PubMed  CAS  Google Scholar 

  98. Stanhope-Baker, P., Hudson, K. M., Shaffer, A. L., Constantinescu, A., and Schlissel, M. S. 1996. Cell type-specific chromatin structure determines the targeting of V(D)J recombinasc activity in vitro. Cell85:887–897.

    Google Scholar 

  99. Kitamura, D., Kudo, A., Schaal, S., Muller, W., Melchers, F., and Rajewsky, K. 1992. A critical role of lambda 5 protein in B cell development. Cell 69:823–831.

    PubMed  CAS  Google Scholar 

  100. Kitamura, D., Roes, J., Kuhn, R., and Rajewsky, K. 1991. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426.

    PubMed  CAS  Google Scholar 

  101. Roth, P. E., Doglio, L., Manz, J. T., Kim, J. Y., Lo, D., and Storb, U. 1993. Immunoglobulin gamma 2b transgenes inhibit heavy chain gene rearrangement, but cannot promote B cell development. J. Exp. Med. 178:2007–2021.

    PubMed  CAS  Google Scholar 

  102. Rolink, A., Karasuyama, H., Grawunder, U., Haasner, D., Kudo, A., and Melchers, F. 1993. B cell development in mice with a defective lambda 5 gene. Eur. J. Immunol. 23:1284–1288.

    PubMed  CAS  Google Scholar 

  103. Karasuyama, H., Rolink, A., and Melchers, F. 1993. A complex of glycoproteins is associated with VpreB/lambda 5 surrogate light chain on the surface of mu heavy chain-negative early precursor B cell lines. J. Exp. Med. 178:469–478.

    PubMed  CAS  Google Scholar 

  104. Tonegawa, S. 1983. Somatic generation of antibody diversity. Nature 302:575–581.

    PubMed  CAS  Google Scholar 

  105. Roth, D. B., Zhu, C, and Gellert, M. 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90:10788–10792.

    PubMed  CAS  Google Scholar 

  106. Hendrickson, E. A., Liu, V. F., and Weaver, D. T. 1991. Strand breaks without DNA rearrangement in V(D)J recombination. Mol. Cell. Biol. 11:3155–3162.

    PubMed  CAS  Google Scholar 

  107. Roth, D. B., Nakajima, P. B., Menetski, J. P., Bosma, M. J., and Gellert, M. 1992. V(D)J recombination in mouse thymocytes: Double-strand breaks near T cell receptor delta rearrangement signals. Cell 69:41–53.

    PubMed  CAS  Google Scholar 

  108. Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C., Demengeot, J., Gottlieb, T. M., Mizuta, R., Varghese, A. J., Alt, F. W., Jeggo, P. A., and Jackson, S. P. 1995. Defective DNA-dependent protein-kinase activity is linked to V(D)J recombination and DNA-repair defects associated with the murine scid mutation. Cell 80:813–823.

    PubMed  CAS  Google Scholar 

  109. Aguilera, R. J., Akira, S., Okazaki, K., and Sakano, H. 1987. A pre-B cell nuclear protein that specifically interacts with the immunoglobulin V-J recombination sequences. Cell 51:909–917.

    PubMed  CAS  Google Scholar 

  110. Hesse, J. E., Lieber, M. R., Mizuuchi, K., and Gellert, M. 1989. V(D)J recombination: A functional definition of the joining signals. Genes Dev. 3:1053–1061.

    PubMed  CAS  Google Scholar 

  111. Bender, J., and Kleckner, N. 1992. Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the target-site consensus sequence. Proc. Natl. Acad. Sci. USA 89:7996–8000.

    PubMed  CAS  Google Scholar 

  112. Wu, Z., and Chaconas, G. 1992. Flanking host sequences can exert an inhibitory effect on the cleavage step of the in vitro mu DNA strand transfer reaction. J. Biol. Chem. 267:9552–9558.

    PubMed  CAS  Google Scholar 

  113. Gerstein, R. M., and Lieber, M. R. 1993. Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev. 7:1459–1469.

    PubMed  CAS  Google Scholar 

  114. Boubnov, N. V., Wills, Z. P., and Weaver, D. T. 1995. Coding sequence composition flanking either signal element alters V(D)J recombination efficiency. Nucleic Acids Res. 23:1060–1067.

    PubMed  CAS  Google Scholar 

  115. Lewis, S. M., and Hesse, J. E. 1991. Cutting and closing without recombination in V(D)J joining. EMBO J. 10:3631–3639.

    PubMed  CAS  Google Scholar 

  116. Hagerman, P. J. 1990. Sequence-directed curvature of DNA. Annu. Rev. Biochem. 59:755–781.

    PubMed  CAS  Google Scholar 

  117. Nadeau, J. G., and Crothers, D. M. 1989. Structural basis for DNA bending. Proc. Natl. Acad. Sci. USA 86:2622–2626.

    PubMed  CAS  Google Scholar 

  118. Gerslein, R. M., and Lieber, M. R. 1993. Extent to which homology can constrain coding exon junctional diversity in V(D)J recombination. Nature 363:625–627.

    Google Scholar 

  119. Neuberger, M. S., and Milstein, C. 1995. Somatic hypermutation. Curr. Opin. Immunol. 7:248–254.

    PubMed  CAS  Google Scholar 

  120. Maizels, N. 1995. Somatic hypermutation-How many mechanisms diversify V-region sequences? Cell 83:9–12.

    PubMed  CAS  Google Scholar 

  121. Storb, U. 1996. The molecular basis of somatic hypermutation of immunoglobulin genes. Curr. Opin. Immunol. 8:206–214.

    PubMed  CAS  Google Scholar 

  122. Tomlinson, I. M., Walter, G., Jones, P. T., Dear, P. H., Sonnhammer, E. L. L., and Winter, G. 1996. The imprint of somatic hypermutation on the repertoire of human germline-v genes. J. Mol. Biol. 256:813–817.

    PubMed  CAS  Google Scholar 

  123. Motoyama, N., Okada, H., and Azuma, T. 1991. Somatic mutation in constant regions of mouse lambda 1 light chains. Proc. Natl. Acad. Sci. USA 88:7933–7937.

    PubMed  CAS  Google Scholar 

  124. McKean, D., Huppi, K., Bell, M, Staudt, L., Gerhard, W., and Weigert, M. 1984. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA 81:3180–3184.

    PubMed  CAS  Google Scholar 

  125. Jacob, J., Kelsoe, G., Rajewsky, K., and Weiss, U. 1991. Intraclonal generation of antibody mutants in germinal centres. Nature 354:389–392.

    PubMed  CAS  Google Scholar 

  126. Gonzalez Fernandez, A., Gupta, S. K., Pannell, R., Neuberger, M. S., and Milstein, C. 1994. Somaticmutation of immunoglobulin lambda chains: A segment of the major intron hypermutates as much as the complementarity-determining regions. Proc. Natl. Acad. Sci. USA 91:12614–12618.

    PubMed  CAS  Google Scholar 

  127. Betz, A. G., Rada, C., Pannell, R., Milstein, C., and Neuberger, M. S. 1993. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: Clustering, polarity, and specific hot spots. Proc. Natl. Acad. Sci. USA 90:2385–2388.

    PubMed  CAS  Google Scholar 

  128. Yelamos, J., Klix, N., Goyenechea, B., Lozano, F., Chui, Y. L., Fernandez, A. G., Pannell, R., Neuberger, M. S., and Milstein, C. 1995. Targeting of non-Lg sequences in place of the V-segment by somatic hypermutation. Nature 376:225–229.

    PubMed  CAS  Google Scholar 

  129. Klein, U., Kueppers, R., and Rajewsky, K. 1994. Variable region gene analysis of B cell subsets derived from a 4-year-old child: Somatically mutated memory B cells accumulate in the peripheral blood already at young age. J. Exp. Med. 180:1383–1393.

    PubMed  CAS  Google Scholar 

  130. Both, G. W., Taylor, L., Pollard, J. W., and Steele, E. J. 1990. Distribution of mutations around rearranged heavy-chain antibody variable-region genes. Mol. Cell. Biol. 10:5187–5196.

    PubMed  CAS  Google Scholar 

  131. Weber, J. S., Berry, J., Litwin, S., and Claflin, J. L. 1991. Somatic hypermutation of the JC intron is markedly reduced in unrearranged kappa and H alleles and is unevenly distributed in rearranged alleles. J. Immunol. 146:3218–3226.

    PubMed  CAS  Google Scholar 

  132. Weber, J. S., Berry, J., Manser, T., and Claflin, J. L. 1991. Position of the rearranged V kappa and its 5’ flanking sequences determines the location of somatic mutations in the J kappa locus. J. Immunol. 146:3652–3655.

    PubMed  CAS  Google Scholar 

  133. Betz, A. G., Milstein, C, Gonzalez Fernandez, A., Pannell, R., Larson, T., and Neuberger, M. S. 1994. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: Critical role for the intron enhancer/matrix attachment region. Cell 77:239–248.

    PubMed  CAS  Google Scholar 

  134. Davis, S. J., Davies, E. A., Barclay, A. N., Daenke, S., Bodine, D., Jones, E. Y., Stuart, D. I., Butters, T. D., Dwek, R. A., and Van-der-Merwe, P. A. 1995. Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J. Biol. Chem. 270:369–375.

    PubMed  Google Scholar 

  135. Hengstschlaeger, M., Maizels, N., and Leung, H. 1995. Targeting and regulation of immunoglobulin gene somatic hypermutation and isotype switch recombination. Prog. Nucleic Acid Res. Mol. Biol. 50:67–99.

    Google Scholar 

  136. Peters, A., and Storb, U. 1996. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4:57–65.

    PubMed  CAS  Google Scholar 

  137. Drapkin, R., Sancar, A., and Reinberg, D. 1994. Where transcription meets repair. Cell 77:9–12.

    PubMed  CAS  Google Scholar 

  138. Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. 1992. RAG-l-deficient mice have no mature B and T lymphocytes. Cell 68:869–877.

    PubMed  CAS  Google Scholar 

  139. Shinkai, Y., Rathbun, C, Lam, K. P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A. M., and Alt, F. 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867.

    PubMed  CAS  Google Scholar 

  140. Chun, J. J., Schatz, D. G., Oettinger, M. A., Jaenisch, R., and Baltimore, D. 1991. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64:189–200.

    PubMed  CAS  Google Scholar 

  141. Bernstein, R. M., Schluter, S. F., Lake, D. F., and Marchalonis, J. J. 1994. Evolutionary conservation and molecular-cloning of the recombinase activating gene-1. Biochem. Biophys. Res. Commun. 205:687–692.

    PubMed  CAS  Google Scholar 

  142. Cuomo, C. A., and Oettinger, M. A. 1994. Analysis of regions of RAG-2 important for V(D)J recombination. Nucleic Acids Res. 22:1810–1814.

    PubMed  CAS  Google Scholar 

  143. Sadofsky, M. J., Hesse, J. E., and Gellert, M 1994. Definition of a core region of RAG-2 that is functional in V(D)J recombination. Nucleic Acids Res. 22:1805–1809.

    PubMed  CAS  Google Scholar 

  144. Sadofsky, M. J., Hesse, J. E., McBlane, J. F., and Gellert, M. 1993. Expression and V(D)J recombination activity of mutated RAG-1 proteins. Nucleic Acids Res. 21:5644–5650.

    PubMed  CAS  Google Scholar 

  145. Silver, D. P., Spanopoulou, E., Mulligan, R. C., and Baltimore, D. 1993. Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid V(D)J recombination. Proc. Natl. Acad. Sci. USA 90:6100–6104.

    PubMed  CAS  Google Scholar 

  146. Oettinger, M. A., Schatz, D. G., Gorka, C., and Baltimore, D. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523.

    PubMed  CAS  Google Scholar 

  147. Gallo, M. L., Pergola, F., Daniels, G. A., and Lieber, M. R. 1994. Distinct roles for RAG-1 in the initiation of V(D)J recombination and in the resolution of coding ends. J. Biol. Chem. 269:22188–22192.

    PubMed  CAS  Google Scholar 

  148. Schlissel, M., Constantinescu, A., Morrow, T., Baxter, M., and Peng, A. 1993. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5’-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7:2520–2532.

    PubMed  CAS  Google Scholar 

  149. Spanopoulou, E., Cortes, P., Shin, C, Huang, C. M., Silver, D. P., Svec, P., and Baltimore, D. 1995. Localization, interaction, and RNA-binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity 3:715–726.

    PubMed  CAS  Google Scholar 

  150. Cuomo, C. A., Kirch, S. A., Gyuris, J., Brent, R., and Oettinger, M. A. 1994. Rchl, a protein that specifically interacts with the RAG-1 recombination-activating protein. Proc. Natl. Acad. Sci. USA 91:6156–6160.

    PubMed  CAS  Google Scholar 

  151. Goerlich, D., Prehn, S., Laskey, R. A., and Hartmann, E. 1994. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79:767–778.

    CAS  Google Scholar 

  152. Cortes, P., Ye, Z. S., and Baltimore, D, 1994. RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRPI. Proc. Natl. Acad. Sci. USA 91:7633–7637.

    PubMed  CAS  Google Scholar 

  153. Oltz, E. M., Alt, F. W., Lin, W. C., Chen, J., Taccioli, G., Desiderio, S. and Rathbun, G. 1993. A V(D)J recombinase-inducible B-cell line: Role of transcriptional enhancer elements in directing V(D)J recombination. Mol. Cell. Biol. 13:6223–6230.

    PubMed  CAS  Google Scholar 

  154. Chen, J., Shinkai, Y., Young, F., and Alt, F. W. 1994. Probing immune functions in RAG-deficient mice. Curr. Opin. Immunol. 6:313–319.

    PubMed  CAS  Google Scholar 

  155. Leu, T. M. J., and Schatz, D. G. 1995. RAG-1 and RAG-2 are components of a high-molecular-weight complex, and association of RAG-2 with this complex is RAG-1 dependent. Mol. Cell. Biol. 15:5657–5670.

    PubMed  CAS  Google Scholar 

  156. van Gent, D. C, McBlane, J. F., Ramsden, D. A., Sadofsky, M. J., Hesse, J. E., and Gellen, M. 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81:925–934.

    PubMed  Google Scholar 

  157. Lin, W. C, and Desiderio, S. 1994. Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc. Natl. Acad. Sci. USA 91:2733–2737.

    PubMed  CAS  Google Scholar 

  158. Lin, W. C, and Desiderio, S. 1993. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260:953–959.

    PubMed  CAS  Google Scholar 

  159. Verkoczy, L. K., Stiernholm, B. J., and Berinstein, N. L. 1995. Up-regulation of recombination activating gene expression by signal transduction through the surface Ig receptor. J. Immunol. 154:5136–5143.

    PubMed  CAS  Google Scholar 

  160. Wilson, A., Held, W., and MacDonald, H. R. 1994. Two waves of recombinase gene expression in developing fhymocytes. J. Exp. Med. 179:1355–1360.

    PubMed  CAS  Google Scholar 

  161. Li, Y. S., Hayakawa, K., and Hardy, R. R. 1993. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178:951–960.

    PubMed  CAS  Google Scholar 

  162. Stiernholm, N. B., and Berinstein, N. L. 1993. Up-regulated recombination-activating gene expression in slg—variants of a human mature B cell line undergoing secondary Ig lambda rearrangements in cell culture. Eur. J. Immunol. 23:1501–1507.

    PubMed  CAS  Google Scholar 

  163. Billips, L. C., Nunez, C. A., Bertrand, F. E., Stankovic, A. K., Gartiand, G. L., Burrows, P. D., and Cooper, M. D. 1995. Immunoglobulin recombinase gene activity is modulated reciprocally by interleukin-7 and CD 19 in B-cell progenitors. J. Exp. Med. 182:973–982.

    PubMed  CAS  Google Scholar 

  164. Knecht, H., Brousset, P., Bachmann, E., Pallesen, G., and Odermatt, B. F. 1994. Expression of human recombination activating genes (RAG-1 and RAG-2) in lymphoma. Leuk. Lymphoma 15:399–403.

    PubMed  CAS  Google Scholar 

  165. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., and Croce, C. M. 1985. The t(14;18) chromosome translations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229:1390–1393.

    PubMed  CAS  Google Scholar 

  166. Showe, L. C, and Croce, C. M. 1987. The role of chromosomal translocations in B-and T-cell neoplasia. Anna. Rev. Immunol. 5:253–277.

    CAS  Google Scholar 

  167. Tsujimoto, Y., Jaffe, E., Cossman, J., Gorham, J., Nowell, P. C., and Croce, C. M. 1985. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 315:340–343.

    PubMed  CAS  Google Scholar 

  168. Srinivas, S. K., and Sixbey, J. W. 1995. Epstein-Barr-virus induction of recombinase-activating genes RAG1 and RAG2. J. Virol. 69:8155–8158.

    PubMed  CAS  Google Scholar 

  169. Kuhn Hallek, I., Sage, D. R., Stein, L., Groelle, H., and Fingeroth, J. D. 1995. Expression of recombination activating genes (RAG-I and RAG-2) in Epstein-Barr virus-bearing B cells. Blood 85:1289–1299.

    PubMed  CAS  Google Scholar 

  170. Schatz, D. G., Oettinger, M. A., and Baltimore, D. 1989. The V(D)J recombination activating gene, RAG-1. Cell 59:1035–1048.

    PubMed  CAS  Google Scholar 

  171. Schatz, D. G., Oettinger, M. A., and Schlissel, M. S. 1992. V(D)J recombination: Molecular biology and regulation. Annu. Rev. Immunol. 10:359–383.

    PubMed  CAS  Google Scholar 

  172. Tonegawa, S., Sakano, H., Make, R., Traunecker, A., Heinrich, G., Roeder, W., and Kurosawa, Y. 1981. Somatic reorganization of immunoglobulin genes during lymphocyte differentiation. Cold Spring Harbor Symp. Quant. Biol. 45(Pt 2):839–858.

    PubMed  CAS  Google Scholar 

  173. Desiderio, S. V., Yancopoulos, G. D., Paskind, M., Thomas, E., Boss, M. A., Landau, N., Alt, F. W., and Baltimore, D. 1984. Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransfera.se in B cells. Nature 311:752–755.

    PubMed  CAS  Google Scholar 

  174. Bogue, M., Gilfillan, S., Benoist, C., and Mathis, D. 1992. Regulation of N-region diversity in antigen receptors through thymocyte differentiation and thymus ontogeny. Proc. Natl. Acad. Sci. USA 89:11011–11015.

    PubMed  CAS  Google Scholar 

  175. Drexler, H. G., Sperling, C., and Ludwig, W. D. 1993. Terminal deoxynucleotidyl transferase (TdT) expression in acute myeloid leukemia. Leukemia 7:1142–1150.

    PubMed  CAS  Google Scholar 

  176. Bertazzoni, U., and Bollum, F. J. 1982. Terminal Transferase in Immunobiology and Leukemia. New York, Plenum Press.

    Google Scholar 

  177. Kumar, A., Widen, S. G., Williams, K. R., Kedar, P., Karpel, R. L., and Wilson, S. H. 1990. Studies of the domain structure of mammalian DNA polymerase beta. Identification of a discrete template binding domain. J. Biol. Chem. 265:2124–2131.

    PubMed  CAS  Google Scholar 

  178. Matsukage, A., Nishikawa, K., Ooi, T., Seto, Y., and Yamaguchi, M. 1987. Homology between mammalian DNA polymerase beta and terminal deoxynucleotidyltransferase. J. Biol. Chem. 262:8960–8962.

    PubMed  CAS  Google Scholar 

  179. Evans, R. K., and Coleman, M. S. 1989. Photoaffinity labeling of terminal deoxynucleotidyl transferase. 1. Active site directed interactions with 8-azido-2’-deoxyadenosine 5’-triphosphate. Biochemistry 28:707–712.

    PubMed  CAS  Google Scholar 

  180. Yang, B., Gathy, K. N., and Coleman, M. S. 1994. Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotyidyl transferase. J. Biol. Chem. 269:11859–11868.

    PubMed  CAS  Google Scholar 

  181. Feeney, A. J. 1990. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172:1377–1390.

    PubMed  CAS  Google Scholar 

  182. Rock, E. P., Sibbald, P. R., Davis, M. M., and Chien, Y. H. 1994. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179:323–328.

    PubMed  CAS  Google Scholar 

  183. Doyen, N., d’Andon, M. F., Bentolila, L. A., Nguyen, Q. T., and Rougeon, F. 1993. Differential splicing in mouse thymus generates two forms of terminal deoxynucleotidyl transferase. Nucleic Acids Res. 21:1187–1191.

    PubMed  CAS  Google Scholar 

  184. Bentolila, L. A., Fanton, d’A. M., Nguyen, Q. T., Martinez, O., Rougeon, F., and Doyen, N. 1995. The two isoforms of mouse terminal deoxynucleotidyl transferase differ in both the ability to add N regions and subcellular localization. EMBO J. 14:4221–4229.

    PubMed  CAS  Google Scholar 

  185. Smale, S. T., and Baltimore, D. 1989. The “initiator” as a transcription control element. Cell 57:103–113.

    PubMed  CAS  Google Scholar 

  186. Lo, K., Landau, N. R., and Smale, S. T. 1991. LyF-l, a transcriptional regulator that interacts with a novel class of promoters for lymphocyte-specific genes. Mol. Cell. Biol. 11:5229–5243.

    PubMed  CAS  Google Scholar 

  187. Zenzie Gregory, B., O’Shea Greenfield, A., and Smale, S. T. 1992. Similar mechanisms for transcription initiation mediated through a TATA box or an initiator element. J. Biol. Chem. 267:2823–2830.

    PubMed  CAS  Google Scholar 

  188. Ernst, P., Hahm, K., and Smale, S. T. 1993. Both LyF-l and an Ets protein interact with a critical promoter element in the murine terminal transferase gene. Mol. Cell. Biol. 13:2982–2292.

    PubMed  CAS  Google Scholar 

  189. Komori, T., Okada, A., Stewart, V., and Alt, F. W. 1993. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261:1171–1175.

    PubMed  CAS  Google Scholar 

  190. Gilfillan, S., Dierich, A., LeMeur, M., Benoist, C., and Mathis, D. 1993. Mice lacking TdT: Mature animals with an immature lymphocyte repertoire. Science 261:1175–1178.

    PubMed  CAS  Google Scholar 

  191. Gilfillan, S., Benoist, C., and Mathis, D. 1995. Mice lacking terminal deoxynucleotidyl transferase—Adult mice with a fetal antigen receptor repertoire. Immunol. Rev. 148:201–219.

    PubMed  CAS  Google Scholar 

  192. Gilfillan, S., Waltzinger, C., Benoist, C., and Mathis, D. 1994. More efficient positive selection of thymocytes in mice lacking terminal deoxynucleotidyl transferase. Int. Immunol. 6:1681–1686.

    PubMed  CAS  Google Scholar 

  193. Rathmell, W. K., and Chu, G. 1994. A DNA end-binding factor involved in double-strand break repair and V(D)J recombination. Mot. Cell. Biol. 14:4741–4748.

    CAS  Google Scholar 

  194. Smider, V., Rathmell, W. K., Lieber, M. R., and Chu, G. 1994. Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA. Science 266:288–291.

    PubMed  CAS  Google Scholar 

  195. Weaver, D. T. 1995. What to do at an end: DNA double-strand-break repair. Trends Genet. 11:388–392.

    PubMed  CAS  Google Scholar 

  196. Jeggo, P. A., Taccioli, G. E., and Jackson, S. P. 1995. Menage-a-trois—Double-strand break repair, V(D)J recombination and DNA-PK. Bioessays 17:949–957.

    PubMed  CAS  Google Scholar 

  197. Finnie, N. J., Gottlieb, T. M., Blunt, T., Jeggo, P. A., and Jackson, S. P. 1995. DNA-dependent proteinkinase activity is absent in xrs-6 cells—Implications for site-specific recombination and DNA doublestrand break repair. Proc. Nail. Acad. Sci. USA 92:320–324.

    CAS  Google Scholar 

  198. Taccioli, G. E., Gottlieb, T. M., Blunt, T., Priestley, A., Demengeot, J., Mizuta, R., Lehmann, A. R., Alt, F. W., Jackson, S. P., and Jeggo, P. A. 1994. Ku80: Product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265:1442–1445.

    PubMed  CAS  Google Scholar 

  199. Getts, R. C., and Stamato, T. D. 1994. Absence of a Ku-like DNA end binding activity in the xrs doublestrand DNA repair-deficient mutant. J. Biol. Chem. 269:15981–15984.

    PubMed  CAS  Google Scholar 

  200. Boubnov, N. V., and Weaver, D. T. 1995. SCID cells are deficient in Ku and replication protein A phosphorylation by the DNA-dependent protein kinase. Mol. Cell. Biol. 15:5700–5706.

    PubMed  CAS  Google Scholar 

  201. Kirchgessner, C. U., Patil, C. K., Evans, J. W., Cuomo, C. A., Fried, L. M., Carter, T., Oettinger, M. A., and Brown, J. M. 1995. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267:1178–1183.

    PubMed  CAS  Google Scholar 

  202. Lees Miller, S. P., Godbout, R., Chan, D. W., Weinfeld, M., Day, R. S., 3rd, Barron, G. M., and Allalunis Turner, J. 1995. Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267:1183–1185.

    PubMed  CAS  Google Scholar 

  203. Nussenzweig, A., Chen, C. H., Soares, V. D., Sanchez, M., Sokol, K., Nussenzweig, M. C., and Li, G. C. 1996. Requirement for ku80 in growth and immunoglobulin V(D)J recombination. Nature 382:551–555.

    PubMed  CAS  Google Scholar 

  204. Pleiman, C. M., D’Ambrosio, D., and Cambier, J. C. 1994. The B-cell antigen receptor complex: Structure and signal transduction. Immunol. Today 15:393–399.

    PubMed  CAS  Google Scholar 

  205. Cambier, J. C., Pleiman, C. M., and Clark, M. R. 1994. Signal transduction by the B cell antigen receptor and its coreceptors. Annu. Rev. Immunol. 12:457–486.

    PubMed  CAS  Google Scholar 

  206. Hombach, J., Tsubata, T., Leclercq, L., Stappert, H., and Reth, M. 1990. Molecular components of the B-cell antigen receptor complex of the IgM class. Nature 343:760–762.

    PubMed  CAS  Google Scholar 

  207. Reth, M. 1992. Antigen receptors on B lymphocytes. Annu. Rev. Immunol. 10:97–121.

    PubMed  CAS  Google Scholar 

  208. Hombach, J., Lottspeich, F., and Reth, M. 1990. Identification of the genes encoding the IgM-alpha and Ig-beta components of the IgM antigen receptor complex by amino-terminal sequencing. Eur. J. Immunol. 20:2795–2799.

    PubMed  CAS  Google Scholar 

  209. Yu, L. M., and Chang, T. W. 1992. Human mb-l gene: Complete cDNA sequence and its expression in B cells bearing membrane Ig of various isotypes. J. Immunol. 148:633–637.

    PubMed  CAS  Google Scholar 

  210. Kashiwamura, S., Koyama, T., Matsuo, T., Steinmetz, M., Kimoto, M., and Sakaguchi, N. 1990. Structure of the murine mb-l gene encoding a putative slgM-associated molecule. J. Immunol. 145:337–343.

    PubMed  CAS  Google Scholar 

  211. Hermanson, G. G., Briskin, M., Sigman, D., and Wall, R. 1989. Immunoglobulin enhancer and promoter motifs 5’ of the B29 B-cell-specific gene. Proc. Natl. Acad. Sci. USA 86:7341–7345.

    PubMed  CAS  Google Scholar 

  212. Hashimoto, S., Chiorazzi, N., and Gregersen, P. K. 1994. The complete sequence of the human CD79b (Ig beta/B29) gene: Identification of a conserved exon/intron organization, immunoglobulin-like regulatory regions, and allelic polymorphism. Immunogenetics 40:145–149.

    PubMed  CAS  Google Scholar 

  213. Hashimoto, S., Gregersen, P. K., and Chiorazzi, N. 1993. The human Ig-beta cDNA sequence, a homologue of murine B29, is identical in B cell and plasma cell lines producing all the human Ig isotypes. J. Immunol. 150:491–498.

    Google Scholar 

  214. Friedrich, R. J., Campbell, K. S., and Cambier, J. C. 1993. The gamma subunit of the B cell antigen-receptor complex is a C-terminally truncated product of the B29 gene. J. Immunol. 150:2814–2822.

    PubMed  CAS  Google Scholar 

  215. Kim, K. M., Alber, G., Weiser, P., and Reth, M. 1993. Differential signaling through the Ig-alpha and Ig-beta components of the B cell antigen receptor. Eur. J. Immunol. 23:911–916.

    Google Scholar 

  216. Flaswinkel, H., and Reth, M. 1994. Dual role of the tyrosine activation motif of the Ig-alpha protein during signal transduction via the B cell antigen receptor. EMBO J. 13:83–89.

    PubMed  CAS  Google Scholar 

  217. Gold, M. R., Matsuuchi, L., Kelly, R. B., and DeFranco, A. L. 1991. Tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. Proc. Natl. Acad. Sci. USA 88:3436–3440.

    PubMed  CAS  Google Scholar 

  218. Tseng, J., Eisfelder, B. J., and Clark, M. R. 1994. The B-cell antigen receptor complex-Mechanisms and implications of tyrosine kinase activation. Immunol. Res. 13:299–310.

    PubMed  CAS  Google Scholar 

  219. Burkhardt, A. L., Brunswick, M., Bolen, J. B., and Mond, J. J. 1991. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc. Nail. Acad. Sci. USA 88:7410–7414.

    CAS  Google Scholar 

  220. Yamanashi, Y., Kakiuchi, T., Mizuguchi, J., Yamamoto, T., and Toyoshima, K. 1991. Association of B cell antigen receptor with protein tyrosine kinase Lyn. Science 251:192–194.

    PubMed  CAS  Google Scholar 

  221. Reth, M. 1989. Antigen receptor tail clue. Nature 338:383–384.

    PubMed  CAS  Google Scholar 

  222. Pleiman, C. M., Abrams, C., Gauen, L. T., Bedzyk, W., Jongstra, J., Shaw, A. S., and Cambier, J. C. 1994. Distinct p53/56lyn and p59fyn domains associate with nonphosphorylaled and phosphorylated Ig-alpha. Proc. Nail. Acad. Sci. USA 91:4268–4272.

    CAS  Google Scholar 

  223. Clark, M. R., Campbell, K. S., Kazlauskas, A., Johnson, S. A., Hertz, M, Potter, T. A., Pleiman, C, and Cambier, J. C. 1992. The B cell antigen receptor complex: Association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 258:123–126.

    PubMed  CAS  Google Scholar 

  224. Weiss, A. 1993. Tcell antigen receptor signal transduction: A tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209–212.

    PubMed  CAS  Google Scholar 

  225. Clark, M. R., Johnson, S. A., and Cambier, J. C. 1994. Analysis of Ig-alpha-tyrosine kinase interaction reveals two levels of binding specificity and tyrosine phosphorylated Ig-alpha stimulation of Fyn activity. EMBO J. 13:1911–1919.

    PubMed  CAS  Google Scholar 

  226. Saouaf, S. J., Mahajan, S., Rowley, R. B., Kut, S. A., Fargnoli, J., Burkhardt, A. L., Tsukada, S., Witte, O. N., and Bolen, J. B. 1994. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement. Proc. Natl. Acad. Sci. USA 91:9524–9528.

    PubMed  CAS  Google Scholar 

  227. Nadler, L. M., Anderson, K. C., Marti, G., Bates, M., Park, E., Daley, J. F., and Schlossman, S. F. 1983. B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated and malignant B lymphocytes. J. Immunol. 131:244–250.

    PubMed  CAS  Google Scholar 

  228. Stamenkovic, I., and Seed, B. 1988. CD19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. J. Exp. Med. 168:1205–1210.

    PubMed  CAS  Google Scholar 

  229. Tedder, T. F., and Isaacs, C. M. 1989. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes-A new member of the immunoglobulin superfamily. J. Immunol. 143:712–717.

    PubMed  CAS  Google Scholar 

  230. Chalupny, N. J., Aruffo, A., Esselstyn, J. M., Chan, P. Y., Bajorath, J., Blake, J., Gilliland, L. K., Ledbetter, J. A., and Tepper, M. A. 1995. Specific binding of FYN and phosphatidylinositol 3-kinase to the B-cell surface glycoprotein CD 19 through their SRC homology-2 domains. Eur. J. Immunol. 25:2978–2984.

    PubMed  CAS  Google Scholar 

  231. Roifman, C. M., and Ke, S. 1993. CD19 is a substrate of the antigen receptor-associated protein tyrosine kinase in human B cells. Biochem. Biophys. Res. Commun. 194:222–225.

    PubMed  CAS  Google Scholar 

  232. Van Noesel, C. J. M., Lankester, A. C., van Schijndel, G. M. W., and van Lier, R. A. W. 1993. The CR2/CD19 complex on human B cells contains the SRC-family kinase Lyn. Int. Immunol. 5:699–708.

    PubMed  Google Scholar 

  233. Tuveson, D. A., Carter, R. H., Soltoff, S. P., and Fearon, D. T. 1993. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260:986–989.

    PubMed  CAS  Google Scholar 

  234. Carter, R. H., and Fearon, D. T. 1992. CD19: Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105–107.

    PubMed  CAS  Google Scholar 

  235. Lankester, A. C., van Schijndel, G. M., Rood, P. M., Verhoeven, A. J., and van Lier, R. A. 1994. B cell antigen receptor cross-linking induces tyrosine phosphorylation and membrane translocation of a multi-meric SHC complex that is augmented by CD19 co-ligation. Eur. J. Immunol. 24:2818–2825.

    PubMed  CAS  Google Scholar 

  236. Kehrl, J. H., Riva, A., Wilson, G. L., and Thevenin, C. 1994. Molecular mechanisms regulating CD19, CD20 and CD22 gene expression. Immunol. Today 15:432–436.

    PubMed  CAS  Google Scholar 

  237. Tedder, T. F., Zhou, L. J., and Engel, P. 1994. The CDI9/CD21 signal transduction complex of B lymphocytes. Immunol. Today 15:437–442.

    PubMed  CAS  Google Scholar 

  238. Maloney, M. D., and Lingwood, C. A. 1994. CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: Implications of molecular mimicry for bdB cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. J. Exp. Med. 180:191–201.

    PubMed  CAS  Google Scholar 

  239. Ledbetter, J. A., Rabinovitch, P. S., June, C. H., Song, C. W., Clark, E. A., and Uckun, F. M. 1988. Antigen-independent regulation of cytoplasmic calcium in B cells with a 12-kDa B-cell growth factor and anti-CD19. Proc. Natl. Acad. Sci. USA 85:1897–1901.

    PubMed  CAS  Google Scholar 

  240. Smith, S. H., Rigley, K. P., and Callard, R. E. 1991. Activation of human B cells through the CD 19 surface antigen results in homotypic adhesion by LFA-I dependent and independent mechanisms. Immunology 73:293–301.

    PubMed  CAS  Google Scholar 

  241. Callard, R. E., Rigley, K. P., Smith, S. H., Thurstan, S., and Shields, J. G. 1992. CD19 regulation of human B cell responses. B cell proliferation and antibody secretion are inhibited or enhanced by ligation of the CD19 surface glycoprotein depending on the stimulating signal used. J. Immunol. 148:2983–2987.

    PubMed  CAS  Google Scholar 

  242. DeRie, M. A., Schumacher, T. N. M., van Schijndel, G. M. W., van Lier, R. A. W., and Miedema, F. 1989. Regulatory role of CD19 molecules in B cell activation and differentiation. Cell. Immunol. 118:368–381.

    CAS  Google Scholar 

  243. Rigley, K. P., and Callard, R. E. 1991. Inhibition of B cell proliferation with anti-CD19 monoclonal antibodies: Anti-CD 19 antibodies do not interfere with early signaling events triggered by anti-IgM or interleukin 4. Eur. J. Immunol. 21:535–540.

    PubMed  CAS  Google Scholar 

  244. Schraven, B., Ratnofsky, S., Gaumont, Y., Lindegger, H., Kirchgessner, H., Bruyns, E., Moebius, U., and Meuer, S. C. 1994. Identification of a novel dimeric phosphoprotein (PP29/30) associated with signaling receptors in human T lymphocytes and natural killer cells. J. Exp. Med. 180:897–906.

    PubMed  CAS  Google Scholar 

  245. Pezzutto, A., Dorken, B., Rabinovitch, P., Ledbetter, J., Moldenhauer, G., and Clark, E. 1987. CD19 monoclonal antibody HD37 inhibits anti-immunoglobulin induced B-cell activation and proliferation. J. Immunol. 138:2793–2799.

    PubMed  CAS  Google Scholar 

  246. Uckun, F. M., Jaszcz, W., Ambrus, J. L., Fauci, A. S., Gajl Peczalska, K., Song, C. W., Wick, M. R., Myers, D.E., Waddick, K., and Ledbetter, J. A. 1988. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and clinical potential of anti-CD 19 immunotoxins. Blood 71:13–29.

    PubMed  CAS  Google Scholar 

  247. Uckun, F. M., and Ledbetter, J. A. 1988. Immunobiologic differences between normal and leukemic human B-cell precursors. Proc. Natl. Acad. Sci. USA 85:8603–8607.

    PubMed  CAS  Google Scholar 

  248. Carter, R. H., Tuveson, D. A., Park, D. J., Rhee, S. G., and Fearon, D. T. 1991. The CD19 complex of B lymphocytes: Activation of phospholipase C by a protein tyrosine kinase-dependent pathway that can be enhanced by the membrane IgM complex. J. Immunol. 147:3663–3671.

    PubMed  CAS  Google Scholar 

  249. Chaouchi, N., Vazquez, A., Galanaud, P., and Leprince, C. 1995. B-cell antigen receptor-mediated apoptosis-Importance of accessory molecules CD19 and CD22, and of surface IgM cross-linking. J. Immunol. 154:3096–3104.

    PubMed  CAS  Google Scholar 

  250. Tedder, T. F., and Engel, P. 1994. CD20-A regulator of cell-cycle progression of B-lymphocytes. Immunol. Today 15:450–454.

    PubMed  CAS  Google Scholar 

  251. Tedder, T. F., Klejman, G., Disteche, C. M., Adler, D. A., Schlossman, S. F., and Saito, H. 1988. Cloning of a complementary DNA encoding a new mouse B lymphocyte differentiation antigen, homologous to the human Bl (CD20) antigen, and localization of the gene to chromosome 19. J. Immunol. 141:4388–4394.

    PubMed  CAS  Google Scholar 

  252. Tedder, T. F., Disteche, C. M., Louie, E., Adler, D. A., Croce, C. M., Schlossman, S. F., and Saito, H. 1989. The gene that encodes the human CD20 (B1) differentiation antigen is located on chromosome 11 near the T(Il:I4)(ql3;q32) translocation site. J.Immunol. 142:2555–2559.

    PubMed  CAS  Google Scholar 

  253. Bubien, J. K., Zhou, L. J., Bell, P. D., Frizzell, R. A., and Tedder, T. F.1993. Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J. Celt Biol. 121:1121–1132.

    CAS  Google Scholar 

  254. Hupp, K., Siwarski, D., Mock, B. A., and Kinet, J. P. 1989. Gene mapping of the three subunits of the high affinity FcR for IgE to mouse chromosomes 1 and 19. J. Immunol. 143:3787–3791.

    PubMed  CAS  Google Scholar 

  255. Stashenko, P., Nadler, L. M., Hardy, R., and Schlossman, S. F. 1981. Expression of cell surface markers after human B lymphocyte activation. Proc. Natl. Acad. Sci. USA 176:1543–1550.

    Google Scholar 

  256. Clark, E. A., and Ledbetter, J. A. 1986. Activation of human B cell proliferation through surface Bp35 and Bp50. Proc. Nail. Acad Sci. USA 83:4494–4498.

    CAS  Google Scholar 

  257. Golay, J. T., Clark, E. A., and Beverley, P. C. 1985. The CD20 (Bp35) antigen is involved in activation of B cells from the G0 to the G1 phase of the cell cycle. J. Immunol. 135:3795–3801.

    PubMed  CAS  Google Scholar 

  258. Tedder, T. F., and Schlossman, S. F. 1988. Phosphorylation of the (BHCD20) molecule by normal and malignant human B lymphocytes. J. Biol. Chem. 263:10009–10015.

    PubMed  CAS  Google Scholar 

  259. Deans, J. P., Schieven, G. L., Shu, G. L., Valentine, M. A., Gilliland, L. A., Aruffo, A., Clark, E. A., and Ledbetter, J. A. 1993. Association of tyrosine and serine kinases with the B cell surface antigen CD20. Induction via CD20 of tyrosine phosphorylation and activation of phospholipase C-gamma 1 and PLC phospholipase C-gamma 2. J. Immunol. 151:4494–4504.

    PubMed  CAS  Google Scholar 

  260. Zola, H. 1987. The surface antigens of human B lymphocytes. Immunol. Today 8:308–315.

    CAS  Google Scholar 

  261. Kanzaki, M., Shibata, H., Mogami, H., and Kojima, I. 1995. Expression of calcium-permeable cation channel CD20 accelerates progression through the g(l) phase in Balb/c 3T3 cells. J. Bitil. Chem. 270:13099–13104.

    CAS  Google Scholar 

  262. Deans, J. P., Kalt, L., Ledbetter, J. A., Schieven, G. L., Bolen, J. B., and Johnson, P. 1995. Association of 75/80-kDa phosphoproteins and the tyrosine kinases LYN, FYN, and LCK with the B-cell molecule-CD20-Evidence against involvement of the cytoplasmic regions of CD20. J. Biol. Chem. 270:22632–22638.

    PubMed  CAS  Google Scholar 

  263. Rosenthal, P., Rimm, I. J., Umiel, T., Griffin, J. D., Osathanondh, R., Schlossman, S. F., and Nadler, L. M, 1983. Ontogeny of human hematopoietic cells: Analysis utilizing monoclonal antibodies. J. Immunol. 131:232–237.

    PubMed  CAS  Google Scholar 

  264. Holder, M., Grafton, G., Macdonald, L., Finney, M., and Gordon, J. 1995. Engagement of CD20 suppresses apoptosis in germinal center B-cells. Eur. J. Immunol. 25:3160–3164.

    PubMed  CAS  Google Scholar 

  265. Valentine, M. A., Cotner, T., Gaur, L., Torres, R., and Clark, E. A. 1987. Expression of the human B-cell surface protein CD20-. Alteration by phorbol 12-myristate 13-acetate. Prix: Nail. Acad. Sci. USA 84:8085–8089.

    CAS  Google Scholar 

  266. Himmelmann, A., Wilson, G. L., Lucas, B., Thevenin, C., and Kehrl, J. 1996. B-cell and developmental stage-specific expression of the human CD20 gene is achieved via a novel pu.l/pip site. J. Invest. Med. 44:A237.

    Google Scholar 

  267. Law, C. L., Sidorenko, S. P., and Clark, E. A. 1994. Regulation of lymphocyte-activation by the cell-surface molecule CD22. Immunol. Today 15:442–449.

    PubMed  CAS  Google Scholar 

  268. Wilson, G. L., Fox, C. H., Fauci, A. S., and Kehrl, J. H. 1991. cDNA cloning of the B cell membrane protein CD22: A mediator of B-B cell interactions. J. Exp. Med. 173:137–148.

    PubMed  CAS  Google Scholar 

  269. Slamenkovic, J., and Seed, B. 1990. The B cell antigen CD22 mediates monocyle and erythrocyte adhesion. Nature 345:74–77.

    Google Scholar 

  270. Engel, P., Nojima, Y., Rothstein, D., Zhou, L. J., Wilson, G. L., Kehrl, J. H., and Tedder, T. F.1993. The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes. J. Immunol. 150:4719–4732.

    PubMed  CAS  Google Scholar 

  271. Sgroi, D., Koretzky, G. A., and Stamenkovic, I. 1995. Regulation of CD45 engagement by the B-cell receptor CD22. Proc. Natl. Acad. Sci. USA 92:4026–4030.

    PubMed  CAS  Google Scholar 

  272. Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I., and Varki, A. 1993. Natural ligands of the B cell adhesion molecule CD22(3 carry N-linked oligosaccharides with a-2,6-linkcd sialic acids that arc required for recognition. J. Biol. Chem. 268:7019–7027.

    PubMed  CAS  Google Scholar 

  273. Schulte, R. J., Campbell, M. A., Fischer, W. H., and Sefton, B. M. 1992. Tyrosine phosphorylation of CD22 during B-cell activation. Science 258:1001–1004.

    PubMed  CAS  Google Scholar 

  274. Leprince, C., Draves, K. E., Geahlen, R. L., Ledbetter, J. A., and Clark, E. A. 1993. CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc. Nail. Acad. Sci. USA 90:3236–3240.

    CAS  Google Scholar 

  275. Peaker, C. J., and Neuberger, M. S. 1993. Association of CD22 with the B cell antigen receptor. Eur. J. Immunol. 23:1358–1366.

    PubMed  CAS  Google Scholar 

  276. Pezzutto, A., Rabinovitch, P. S., Dorken, B., Moldenhauer, G., and Clark, E. A. 1988. Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin. J. Immunol. 140:1791–1795.

    PubMed  CAS  Google Scholar 

  277. Varki, A. 1992. Selectins and other mammalian sialic acid-binding lectins. Curr. Opin. Cell Biol. 4:257–261.

    PubMed  CAS  Google Scholar 

  278. Sgroi, D., Varki, A., Braesch Andersen, S., and Stamenkovic, I. 1993. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 268:7011–7018.

    PubMed  CAS  Google Scholar 

  279. Clark, E. A. 1993. CD22, a B cell-specific receptor, mediates adhesion and signal transduction. J. Immunol. 150:4715–4718.

    PubMed  CAS  Google Scholar 

  280. Campbell, M. A., and Klinman, N. R. 1995. Phosphotyrosine-dependent association between CD22 and protein-tyrosine-phosphatase 1c. Eur. J. Immunol. 25:1573–1579.

    PubMed  CAS  Google Scholar 

  281. Doody, G. M., Justement, L. B., Delibrias, C. C., Matthews, R. J., Lin, J. J., Thomas, M. L., and Fearon, D. T. 1995. A role in B-cell activation for CD22 and the protein-tyrosine-phosphatase SHP. Science 269:242–244.

    PubMed  CAS  Google Scholar 

  282. Doody, G., Justement, L., Matthews, R. J., Roy, G., Lin, J., Thomas, M., and Fearon, D. 1995. Tyrosine phosphorylation of CD22 by membrane immunoglobulin recruits the negative regulatory protein-tyrosinephosphatase, SHPTPI. EASEB J. 9:A505.

    Google Scholar 

  283. Stamenkovic, I., Sgroi, D., Aruffo, A., Sy, M. S., and Anderson, T. 1991. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2-6 sialyltransferase, CD75, on B cells. Cell 66:1133–1144.

    PubMed  CAS  Google Scholar 

  284. Sgroi, D., and Stamenkovic, I. 1994. The B-cell adhesion molecule CD22 is cross-species reactive and recognizes distinct sialoglycoproteins on different functional T-cell subpopulations. Scand. J. Immunol. 39:433–438.

    PubMed  CAS  Google Scholar 

  285. Tuscano, J., Engel, P., Tedder, T. F., and Kehrl, J. H. 1996. Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B-cells and blocking CD22/CD221 interactions impairs T-cell proliferation. Blood 87:4723–4730.

    PubMed  CAS  Google Scholar 

  286. Law, C. L., Aruffo, A., Chandran, K. A., Doty, R. T., and Clark, E. A. 1995. Ig domain-1 and domain-2 of murine CD22 constitute the ligand binding domain and bind multiple sialylated ligands expressed on B-cells and T-cells. J. Immunol. 155:3368–3376.

    PubMed  CAS  Google Scholar 

  287. Aruffo, A., Kanner, S. B., Sgroi, D., Ledbetter, J. A., and Stamenkovic, I. 1992. CD22-mediated stimulation of T cells regulates T-cell receptor/CD3-induced signaling. Proc. Natl. Acad. Sci. USA 89:10242–10246.

    PubMed  CAS  Google Scholar 

  288. Thomas, M. L. 1989. The leukocyte common antigen family. Annu. Rev. Immunol. 7:339–369.

    PubMed  CAS  Google Scholar 

  289. Poppema, S., Lai, R., Visser, L., and Yan, X. J. 1996. CD45 (leukocyte common antigen) expression in T-lymphocyte and B-lymphocyte subsets. Leuk. Lymphoma 20:217–222.

    PubMed  CAS  Google Scholar 

  290. Justement, L. B., Campbell, K. S., Chien, N. C., and Cambier, J. C. 1991. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science 252:1839–1842.

    PubMed  CAS  Google Scholar 

  291. Reth, M. 1995. The B-cell antigen receptor complex and co-receptors. Immunol. Today 16:310–313.

    PubMed  CAS  Google Scholar 

  292. Koretzky, G. A., Picus, J., Schultz, T., and Weiss, A. 1991. Tyrosine phosphatase CD45 is required for T cell antigen receptor and CD2 mediated activation of a protein tyrosine kinase and interkeukin 2 production. Proc. Noll. Acad. Sci. USA 88:2037–2041.

    CAS  Google Scholar 

  293. Hovis, R. R., Donovan, J. A., Musci, M. A., Motto, D. G., Goldman, F. D., Ross, S. E., and Koretzky, G. A. 1993. Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science 260:544–546.

    PubMed  CAS  Google Scholar 

  294. Hurley, T. R., Hyman, R., and Sefton, B. M. 1993. Differential effects of expression of the CD45 tyrosine protein phosphatase on the tyrosine phosphorylation of the LCK, FYN, and c-SRC tyrosine protein kinases. Mol. Cell. Biol. 13:1651–1656.

    PubMed  CAS  Google Scholar 

  295. McFarland, E. D., Hurley, T. R., Pingel, J. T., Sefton, B. M., Shaw, A., and Thomas, M. L. 1993. Correlation between SRC family member regulation by the protein-tyrosine-phosphatase CD45 and trans-membrane signaling through the T-cell receptor. Proc. Natl. Acad. Sci. USA 90:1402–1406.

    CAS  Google Scholar 

  296. Koretzky, G. A. 1993. Role of the CD45 tyrosine phosphatase in signal transduction in the immune system. FASEB J. 7:420–426.

    PubMed  CAS  Google Scholar 

  297. Sieh, M., Bolen, J. B., and Weiss, A. 1993. CD45 specifically modulates binding of LCK to a phosphopeptide encompassing the negative regulatory tyrosine of LCK. EMBO J. 12:315–321.

    PubMed  CAS  Google Scholar 

  298. Shiroo, M., Goff, L., Biffen, M., Shivnan, E., and Alexander, D. 1992. CD45 tyrosine phosphatase-activated P59FYN couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. EMBO J. 11:4887–4897.

    PubMed  CAS  Google Scholar 

  299. Lin, J., Brown, V. K., and Justement, L. B.1992. Regulation of basal tyrosine phosphorylation of the B cell antigen receptor complex by the protein tyrosine phosphatase, CD45. J. Immunol. 149:3182–3190.

    PubMed  CAS  Google Scholar 

  300. Kishihara, K., Penninger, J., Wallace, V. A., Kundig, T. M., Kawai, K., Wakeham, A., Timms, E., Pfeffer, K., Ohashi, P. S., Thomas, M. L., Furlonger, C., Paige, C. J., and Mak, T. W. 1993. Normal B lymphocyte development but impaired T cell maturation in CD45-exon 6 protein tyrosine phosphatase-deficient mice. Cell 74:143–156.

    PubMed  CAS  Google Scholar 

  301. Cyster, J. G., Healy, J. I., Kishihara, K., Mak, T. W., Thomas, M. L., and Goodnow, C. C. 1996. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381:325–328.

    PubMed  CAS  Google Scholar 

  302. Gold, M. R., Law, D. A., and DeFranco, A. L. 1990. Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. Nature 345:810–813.

    PubMed  CAS  Google Scholar 

  303. Reth, M. 1994. B cell antigen receptors. Curr. Opin. Immunol. 6:3–8.

    PubMed  CAS  Google Scholar 

  304. Sillman, A. L., and Monroe, J. G. 1995. Association of p72(syk) with the sre homology-2 (SH2) domains of PLC-gamma-1 in B-lymphocytes. J. Biol Chem. 270:11806–11811.

    PubMed  CAS  Google Scholar 

  305. Klaus, G. G., Harnett, M. M., and Rigley, K. P. 1989. G-protein regulation of polyphosphoinositide breakdown in B cells. Adv. Exp. Med. Biol. 254:95–100.

    PubMed  CAS  Google Scholar 

  306. Coggeshall, K. M., McHugh, J. C., and Altman, A. 1992. Predominant expression and activation-induced tyrosine phosphorylation of phospholipase C-gamma 2 in B lymphocytes. Proc. Natl. Acad. Sci. USA 89:5660–5664.

    PubMed  CAS  Google Scholar 

  307. Sillman, A. L., and Monroe, J. G. 1994. Surface IgM-stimulated proliferation, inositol phospholipid hydrolysis, Ca2 +, and tyrosine phosphorylation are not altered in B-cells from p59 (fyn-/-) mice. J. Leukoc. Biol. 56:812–816.

    PubMed  CAS  Google Scholar 

  308. Sanchez, M., Misulovin, Z., Burkhardt, A. L., Mahajan, S., Costa, T., Franke, R., Bolen, J. B., and Nussenzweig, M. 1993. Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta. J. Exp. Med. 178:1049–1055.

    PubMed  CAS  Google Scholar 

  309. Harnett, M. M., Holman, M. J., and Klaus, G. G. 1989. Regulation of surface IgM-and IgD-mediated inositol phosphate formation and Ca2* mobilization in murine B lymphocytes. Eur. J. Immunol. 19:1933–1939.

    PubMed  CAS  Google Scholar 

  310. Campbell, M. A., and Sefton, B. M. 1990. Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin. EMBO J. 9:2125–2131.

    PubMed  CAS  Google Scholar 

  311. Brunswick, M., Samelson, L. E., and Mond, J. J. 1991. Surface immunoglobulin crosslinking activates a tyrosine kinase pathway in B cells that is independent of protein kinase C. Proc. Natl. Acad. Sci. USA 88:1311–1314.

    PubMed  CAS  Google Scholar 

  312. Dymecki, S. M., Zwollo, P., Zeller, K., Kuhajda, F. P., and Desiderio, S. V. 1992. Structure and developmental regulation of the B-lymphoid tyrosine gene blk. J. Biol. Chem. 267:4815–4823.

    PubMed  CAS  Google Scholar 

  313. Nagai, K., Takala, M., Yamamura, H., and Kurosakiso, T. 1995. Tyrosine phosphorylation of SHC is mediated through lyn and syk in B-cell receptor signaling. J. Biol. Chem. 270:6824–6829.

    PubMed  CAS  Google Scholar 

  314. Pawson, T., and Gish, G. D. 1992. SH2 and SH3 domains: From structure to function. Cell 71:359–362.

    PubMed  CAS  Google Scholar 

  315. Prasad, K. V., Janssen, O., Kapeller, R., Raab, M., Cantley, L. C., and Rudd, C. E. 1993. Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells. Proc. Nail. Acad. Sci. USA 90:7366–7370.

    CAS  Google Scholar 

  316. Liu, X., Marengere, L. E., Koch, C. A., and Pawson, T. 1993. The v-src SH3 domain binds phosphatidylinositol 3’-kinase. Mol. Cell. Biol. 13:5225–5232.

    PubMed  CAS  Google Scholar 

  317. Vogel, L. B., and Fujita, D. J. 1993. The SH3 domain of p56lck is involved in binding to phosphatidylinositol 3’-kinase from T lymphocytes. Mol. Cell. Biol. 13:7408–7417.

    PubMed  CAS  Google Scholar 

  318. Bergman, M., Mustelin, T., Oetken, C., Partanen, J., Flint, N. A., Amrein, K. E., Autero, M., Bum, P., and Alitalo, K. 1992. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J. 11:2919–2924.

    PubMed  CAS  Google Scholar 

  319. Nada, S., Okada, M., MacAuley, A., Cooper, J. A., and Nakagawa, H. 1991. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351:69–72.

    PubMed  CAS  Google Scholar 

  320. Okada, M., and Nakagawa, H. 1989. A protein tyrosine kinase involved in regulation of pp60c-src function. J. Biol. Chem. 264:20886–20893.

    PubMed  CAS  Google Scholar 

  321. Kong, G. H., Bu, J. Y., Kurosaki, T., Shaw, A. S., and Chan, A. C. 1995. Reconstitution of Syk function by the ZAP-70 protein tyrosine kinase. Immunity 2:485–492.

    PubMed  CAS  Google Scholar 

  322. Kurosaki, T., Takata, M., Yamanashi, Y., Inazu, T., Taniguchi, T., Yamamoto, T., and Yamamura, H. 1994. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J. Exp. Med. 179:1725–1729.

    PubMed  CAS  Google Scholar 

  323. Iwashima, M., Irving, B. A., Van Oers, N. S., Chan, A. C., and Weiss, A. 1994. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263:1136–1139.

    PubMed  CAS  Google Scholar 

  324. Kurosaki, T., Johnson, S. A., Pao, L., Sada, K., Yamamura, H., and Cambier, J. C. 1995. Role of the syk autophosphorylation site and SH2 domains in B-cell antigen receptor signaling. J. Exp. Med. 182:1815–1823.

    PubMed  CAS  Google Scholar 

  325. Hata, A., Sabe, H., Kurosaki, T., Takata, M., and Hanafusa, H. 1994. Functional analysis of csk in signaltransduction through the B-cell antigen receptor. Mol. Cell. Biol. 14:7306–7313.

    PubMed  CAS  Google Scholar 

  326. Panchamoorthy, G., Fukazawa, T., Miyake, S., Soltoff, S., Reedquist, K., Druker, B., Shoelson, S., Cantley, L., and Band, H. 1996. P120(cbl) is a major substrate of tyrosine phosphorylation upon B-cell antigen receptor stimulation and interacts in-vivo with fyn and syk tyrosine kinases, grb2 and SHC adapters, and the p85 subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 271:3187–3194.

    PubMed  CAS  Google Scholar 

  327. Desiderio, S. 1993. Human genetics. Becoming B cells. Nature 361:202–203.

    PubMed  CAS  Google Scholar 

  328. Aoki, Y., Isselbacher, K. J., and Pillai, S. 1994. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc. Natl. Acad. Sci. USA 91:10606–10609.

    PubMed  CAS  Google Scholar 

  329. de Weers, M., Brouns, G. S., Hinshelwood, S., Kinnon, C., Schuurman, R. K., Hendriks, R. W., and Borst, J. 1994. B-cell antigen receptor stimulation activates the human Bruton’s tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J. Biol. Chem. 269:23857–23860.

    PubMed  Google Scholar 

  330. Tsukada, S., Saffran, D. C., Rawlings, D. J., Parolini, O., Allen, R. C., Klisak, L., Sparkes, R. S., Kubagawa, H., Mohandas, T., Quan, S., Belmont, J., Cooper, M. D., Conley, M. E., and Witte, O. N. 1993. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72:279–290.

    PubMed  CAS  Google Scholar 

  331. Li, T. J., Tsukada, S., Satterthwaite, A., Havlik, M. H., Park, H., Takatsu, K., and Witte, O. N. 1995. Activation of Bruton’s tyrosine kinase (btk) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2:451–460.

    PubMed  CAS  Google Scholar 

  332. Bolen, J. B. 1993. Nonreceptor tyrosine protein kinases. Oncogene 8:2025–2031.

    PubMed  CAS  Google Scholar 

  333. Vetrie, D., Vorechovsky, I., Sideras, P., Holland, J., Davies, A., Flinter, F., Hammarstroem, L., Kinnon, C, Levinsky, R., Bobrow, M., Smith, E., and Bentley, D. R. 1993. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361:226–233.

    PubMed  CAS  Google Scholar 

  334. Rawlings, D. J., Saffran, D. C., Tsukada, S., Largaespada, D. A., Grimaldi, J. C., Cohen, L., Mohr, R. N., Bazan, J. F., Howard, M., and Copeland, N. G. 1993. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261:358–361.

    PubMed  CAS  Google Scholar 

  335. Thomas, J. D., Sideras, P., Smith, C. I., Vorechovsky, I., Chapman, V., and Paul, W. E. 1993. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261:355–358.

    PubMed  CAS  Google Scholar 

  336. Rawlings, D. J., Scharenberg, A. M., Park, H., Wahl, M. I., Lin, S. Q., Kato, R. M., Fluckiger, A. C, Witte, O. N., and Kinet, J. P. 1996. Activation of BTK by a phosphorylation mechanism initiated by src family kinases. Science 271:822–825.

    PubMed  CAS  Google Scholar 

  337. Pei, D. H., Wang, J., and Walsh, C. T. 1996. Differential functions of the 2 src homology-2 domains in protein-tyrosine-phosphatase SH-PTP1. Proc. Nail. Acad. Sci. USA 93:1141–1145.

    CAS  Google Scholar 

  338. Eck, M. J., Pluskey, S., Trub, T., Harrison, S. C., and Shoelson, S. E. 1996. Spatial constraints on the recognition of phosphoproteins by the tandem sh2 domains of the phosphatase sh-ptp2. Nature 379:277–280.

    PubMed  CAS  Google Scholar 

  339. Pani, G., Kozlowski, M., Cambier, J. C., Mills, G. B., and Siminovitch, K. A. 1995. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J. Exp. Med, 181:2077–2084.

    PubMed  CAS  Google Scholar 

  340. Kozlowski, M., Pani, G., Pawson, T., and Siminovitch, K. A. 1996. The tyrosine phosphatase PTPlc associates with VAV, GRB2, and mSOSl in hematopoietic cells. J. Biol. Chem. 271:3856–3862.

    Google Scholar 

  341. Wu, Y. J., Pani, G., Siminovitch, K. A., and Hozumi, N. 1995. Antigen receptor-triggered apoptosis in immature B-cell lines is associated with the binding of a 44-kDa phosphoprotein to the ptplc tyrosine phosphatase. Eur. J. Immunol. 25:2279–2284.

    PubMed  CAS  Google Scholar 

  342. Cyster, J. G., and Goodnow, C. C. 1995. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2:13–24.

    PubMed  CAS  Google Scholar 

  343. Bignon, J. S., and Siminovitch, K. A. 1994. Identification of ptplc mutation as the genetic defect in motheaten and viable moth-eaten mice-A step toward defining the roles of protein-tyrosine phosphatases in the regulation of hematopoietic-cell differentiation and function. C/w. Immunol. Immunopathol. 73:168–179.

    CAS  Google Scholar 

  344. Tsui, H. W., Siminovitch, K. A., de Souza, L., and Tsui, F. W. 1993. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4:124–129.

    PubMed  CAS  Google Scholar 

  345. Yu, C. C. K., Tsui, H. W., Ngan, B. Y., Shulman, M. J., Wu, G. E., and Tsui, F. W. L. 1996. B-cells and T-cells are not required for the viable moth-eaten phenotype. J. Exp. Med. 183:371–380.

    PubMed  CAS  Google Scholar 

  346. Conley, M. E., and Delacroix, D. L. 1987. Intravascular and mucosal immunoglobulin A: Two separate but related systems of immune defense? Ann. Intern. Med. 106:892–899.

    PubMed  CAS  Google Scholar 

  347. Brandtzaeg, P. 1995. Molecular and cellular aspects of the secretory immunoglobulin system. APMIS 103:1–19.

    PubMed  CAS  Google Scholar 

  348. Lamm, M. E., Nedrud, J. G., Kaetzel, C. S., and Mazanec, M. B. 1995. IgA and mucosal defense. APMIS 103:241–246.

    PubMed  CAS  Google Scholar 

  349. Lamm, M. E. 1988. The IgA mucosal immune system. Am. J. Kidney Dis. 12:384–387.

    PubMed  CAS  Google Scholar 

  350. Mestecky, J. 1988. Immunobiology of IgA. Am. J. Kidney Dis. 12:378–383.

    PubMed  CAS  Google Scholar 

  351. Kramer, D. R., and Cebra, J. J. 1995. Early appearance of “natural” mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J. Immunol. 154:2051–2062.

    PubMed  CAS  Google Scholar 

  352. Kramer, D. R., and Cebra, J. J. 1994. Modulation of the neonatal IgA response to enteric antigens by maternal antibody. Adv. Exp. Med. Biol. 355:271–275.

    PubMed  CAS  Google Scholar 

  353. Flores, A. E., Nelson, J. A., Wu, X. Y., and Ferrieri, P. 1993. Antibody profiles to the group B streptococcal beta antigen in maternal and infant paired sera. APMIS 101:41–49.

    PubMed  CAS  Google Scholar 

  354. Hanson, L. A., Adlerberth, I., Carlsson, B., Zaman, S., Hahn Zoric, M., and Jalil, F. 1990. Antibody-mediated immunity in the neonate. Paediatr. Paedol. 25:371–376.

    CAS  Google Scholar 

  355. Kramer, D. R., and Cebra, J. J. 1995. Role of maternal antibody in the induction of virus-specific and bystander IgA responses in Peyers patches of suckling mice. Int. Immunol. 7:911–918.

    PubMed  CAS  Google Scholar 

  356. MacDonald, G. C. 1983. The ontogeny of the mucosal immune system in rodents. In: Parrott, D., and MacDonald, G. C., eds., The Ontogeny of the Immune System of the Gut, Boca Raton, CRC Press, p. 51.

    Google Scholar 

  357. Truedsson, L., Baskin, B., Pan, Q., Rabbani, H., Vorechovsky, I., Smith, C. I. E., and Hammarstrom, L. 1995. Genetics of IgA deficiency. APMIS 103:833–842.

    PubMed  CAS  Google Scholar 

  358. Mostov, K. E., and Cardone, M. H. 1995. Regulation of protein traffic in polarized epithelial cells. Bioessays 17:129–138.

    PubMed  CAS  Google Scholar 

  359. Song, W., Apodaca, G., and Mostov, K. 1994. Transcytosis of the polymeric immunoglobulin receptor is regulated in multiple intracellular compartments. J. Biol. Chem. 269:29474–29480.

    PubMed  CAS  Google Scholar 

  360. Mostov, K. E. 1994. Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 12:63–84.

    PubMed  CAS  Google Scholar 

  361. Song, W., Bomsel, M., Casanova, J., Vaerman, J. P., and Mostov, K. 1994. Stimulation of transcytosis of the polymeric immunoglobulin receptor by dimeric IgA. Proc. Natl. Acad. Sci. USA 91:163–166.

    PubMed  CAS  Google Scholar 

  362. Song, W., Vaerman, J. P., and Mostov, K. E. 1995. Dimeric and tetrameric IgA are transcytosed equally by the polymeric Ig receptor. J. Immunol. 155:715–721.

    PubMed  CAS  Google Scholar 

  363. Chapin, S. J., Enrich, C., Aroeti, B., Havel, R. J., and Mostov, K. E. 1996. Calmodulin binds to the basolateral targeting signal of the polymeric immunoglobulin receptor. J. Biol. Chem. 271:1336–1342.

    PubMed  CAS  Google Scholar 

  364. Casanova, J. E., Breitfeld, P. P., Ross, S. A., and Mostov, K. E. 1990. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science 248:742–745.

    PubMed  CAS  Google Scholar 

  365. Apodaca, G., and Mostov, K. E. 1993. Transcytosis of placental alkaline phosphatase-polymeric immunoglobulin receptor fusion proteins is regulated by mutations of Ser664. J. Biol. Chem. 268:23712–23719.

    PubMed  CAS  Google Scholar 

  366. Mestecky, J., Russell, M. W., Jackson, S., and Brown, T. A. 1986. The human IgA system: A reassessment. Clin. Immunol. Immunopothol. 40:105–114.

    CAS  Google Scholar 

  367. Mestecky, J., and McGhee, J. R. 1987. Immunoglobulin A (IgA): Molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv. Immunol. 40:153–245.

    PubMed  CAS  Google Scholar 

  368. Hiki, Y., Iwase, H., Saitoh, M., Saitoh, Y., Horii, A., Hotta, K., and Kobayashi, Y. 1996. Reactivity of glomerular and serum IgAl to jacalin in IgA nephropathy. Nephron 72:429–435.

    PubMed  CAS  Google Scholar 

  369. Mestecky, J., and Russell, M. W. 1986. IgA subclasses. Monogr. Allergy 19:277–301.

    PubMed  CAS  Google Scholar 

  370. Qiu, J. Z., Brackee, G. P., Plaut, A. G., Sneller, M. C., and Strober, W. 1986. Analysis of the specificity of bacterial immunoglobulin-A (IgA) proteases by a comparative study of APE serum IgAs as substrates. Infect. Immun. 64:933–937.

    Google Scholar 

  371. de Lange, G. G. 1989. Polymorphisms of human immunoglobulins: Gm, Am, Em and Km allotypes. Exp. Clin. Immunogenet. 6:7–17.

    PubMed  Google Scholar 

  372. Butor, C., Couedelcourteille, A., Venet, A., and Guillet, J. G. 1995. Local immunity and vaccination. Med. Sci. 11:703–711.

    Google Scholar 

  373. Mombaerts, P., Mizoguchi, E., Grusby, M. J., Glimcher, L. H., Bhan, A. K., and Tonegawa, S. 1993. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75:274–282.

    PubMed  CAS  Google Scholar 

  374. Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A. C., and Horak, L. 1993. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261.

    PubMed  CAS  Google Scholar 

  375. Lehner, T., Bergmeier, L. A., Tao, L., Panagiotidi, C., Klavinskis, L. S., Hussain, L., Ward, R. G., Meyers, N., Adams, S. E., Gearing, A. J., and Brookes, R. 1994. Targeted lymph node immunization with simian immunodeficiency virus p27 antigen to elicit genital, rectal, and urinary immune responses in nonhuman primates. J. Immunol. 153:1858–1868.

    PubMed  CAS  Google Scholar 

  376. Kiyono, H., Miller, C. J., Lu, Y. C., Lehner, T., Cranage, M., Huang, Y. T., Kawabata, S., Marthas, M., Roberts, B., Nedrud, J. G., Lamm, M. E., Bergmeier, L., Brookes, R., Tao, L., and McGhee, J. R. The common mucosal immune system for the reproductive tract-Basic principles applied toward an AIDS vaccine. Adv. Drug Delh: Rev. 18:23–52.

    Google Scholar 

  377. Bukawa, H., Sekigawa, K. I., Hamajima, K., Fukushima, J., Yamada, Y., Kiyono, H., and Okuda, K. 1995. Neutralization of HIV-1 by secretory IgA induced by oral immunization with a new macromolecular multicomponent peptide vaccine candidate. Nat. Med. 1:681–685.

    PubMed  CAS  Google Scholar 

  378. Gorse, G. J., Rogers, J. H., Perry, J. E., Newman, F. K., Frey, S. E., Patel, G. B., Belshe, R. B., Schwartz, D. H., Clements, M. L., Keefer, M., Dolin, R., McElrath, J., Corey, L., Graham, B. S., Wright, P. F., Stablein, D. M., Matthews, T. J., Bolognesi, D., Mestecky, J., Walker, M. C., and Fast, P. E. 1995. HIV-1 recombinant gp!60 vaccine-induced antibodies in serum and saliva. Vaccine 13:209–214.

    PubMed  CAS  Google Scholar 

  379. Lin, L., and Putnam, F. W. 1996. Primary structure of the Fc region of human immunoglobulin D: Implications of evolutionary origin and biologic function. Proc. Natl. Acad. Sci. USA 78:504–511.

    Google Scholar 

  380. Melcher, U., Vitetta, E. S., McWilliams, M., Lamm, M. E., Philips-Quagliata, J. M., and Uhr, J. W. 1974. Cell surface immunoglobulin X. Identification of an IgD-like molecule on the surface of murine splenocytes. J. Exp. Med. 140:1427–1435.

    PubMed  CAS  Google Scholar 

  381. Forster, I., Vieira, P., and Rajewsky, K. 1989. Flow cytometric analysis of cell proliferation dynamics in the B cell compartment of the mouse. Int. Immunol. 1:321–331.

    PubMed  CAS  Google Scholar 

  382. Abney, E., and Parkhouse, R. M. 1974. Candidate for immunoglobulin D present on murine B lymphocytes. Nature 253:600–602.

    Google Scholar 

  383. Abney, E., Cooper, M. D., Kearney, J. F., Lawton, A., and Parkhouse, R. M. 1978. Sequential expression of immunoglobulin on developing mouse B lymphocytes. J. Immunol. 120:2041–2050.

    PubMed  CAS  Google Scholar 

  384. Layton, J. E., Johnson, G. R., Scott, D. W., and Nossal, G. J. V., 1978. The ami delta suppressed mouse. Eur. J. Immunol. 8:325–332.

    PubMed  CAS  Google Scholar 

  385. Morris, S. C., Lees, A., and Finkelman, F. D. 1994. In vivo activation of naive T cells by antigen-presenting B cells. J. Immunol. 152:3777–3785.

    PubMed  CAS  Google Scholar 

  386. MacLennan, I. C., Gray, D., Kumararatne, D. S., and Bazin, H. 1982. The lymphocytes of silenic marginal zones: A distinct B-cell lineage. Immunol. Today 3:305–307.

    Google Scholar 

  387. Black, S. J., Van der Loo, W., Loken, M. R., and Herzenberg, L. A. 1978. Expression of IgD by murine lymphocytes: Loss of surface IgD indicates maturation of memory B cells. J. Exp. Med. 147:984–986.

    PubMed  CAS  Google Scholar 

  388. Havran, W. L., DiGiusto, D., and Cambier, J. C. 1984. mIgM:mlgD ratios on B cells: Mean mlgD expression exceeds mIgM by 10-fold on most splenic B cells. J. Immunol. 132:1712–1721.

    PubMed  CAS  Google Scholar 

  389. Brink, R., Goodnow, C.C., and Basten, A. 1995. IgD expression on B cells is more efficient than IgM but both receptors are functionally equivalent in up-regulation CD80/CD86 co-stimulatory molecules. Eur. J. Immunol. 25:1980–1984.

    PubMed  CAS  Google Scholar 

  390. Venkitaraman, A. R., Williams, G. T., Dariavach, P., and Neuberger, M. S. 1991. The B-cell antigen receptor of the five immunoglobulin classes. Nature 352:777–781.

    PubMed  CAS  Google Scholar 

  391. Cooke, M. P., Heath, A. W., Shokat, K. M., Zeng, Y., Finkelman, F. D., Linsley, P. S., Howard, M., and Goodnow, C. C. 1994. Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells. J. Exp. Med. 179:425–438.

    PubMed  CAS  Google Scholar 

  392. Cambier, J. C., and Ransom, J. T. 1987. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu. Rev. Immunol. 5:175–199.

    PubMed  CAS  Google Scholar 

  393. Brink, R., Goodnow, C. C., Crosbie, J., Adams, E., Eris, J., Mason, D. Y., Hartley, S. B., and Basten, A. 1992. Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J. Exp. Med. 176:991–1005.

    PubMed  CAS  Google Scholar 

  394. Goodnow, C. C., Crosbie, J., Adelstein, S., Lavoie, T. B., Smith-Gill, S. J., Brink, R. A., Pritchard-Briscoe, H., Wotherspoon, J. S., Loblay, R. H., and Raphael, K. 1988. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334:676–682.

    PubMed  CAS  Google Scholar 

  395. Mason, D. Y., Jones, M., and Goodnow, C. C. 1992. Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int. Immunol. 4:163–175.

    PubMed  CAS  Google Scholar 

  396. Hathcock, K. S., Laszlo, G., Pucillo, C., Linsley, P., and Hodes, R. J. 1994. Comparative analysis of B7-1 and B7-2 costimulatory ligands: Expression and function. J. Exp. Med. 180:631–640.

    PubMed  CAS  Google Scholar 

  397. Kim, K. M., and Reth, M. 1995. The B-cell antigen receptor of class IgD induces a stronger and more prolonged protein-tyrosine phosphorylation than that of class IgM. J. Exp. Med. 181:1005–1014.

    PubMed  CAS  Google Scholar 

  398. Monroe, J. G., Havran, W. L., and Cambier, J. C. 1983. B lymphocyte activation: Entry into cell cycle is accompanied by decreased expression of IgD but not IgM. Eur. J. Immunol. 13:208–213.

    PubMed  CAS  Google Scholar 

  399. Black, S. J., Tokuhisa, T., and Herzenberg, L. A. 1980. Memory B cells at successive stages of differentiation: Expression of surface IgD and capacity for self renewal. Eur. J. Immunol. 10:846–852.

    PubMed  CAS  Google Scholar 

  400. Bhan, A. K., Nadler, L. M., Stashenko, P., McGluskey, R. T., and Schlossman, S. F. 1996. Stages of B cell differentiation in human lymphoid tissue. J. Exp. Med. 154:737–745.

    Google Scholar 

  401. Liu, Y. J., Oldfield, S., and MacLennan, J. C. 1988. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol. 18:355–362.

    PubMed  CAS  Google Scholar 

  402. McHeyzer Williams, M. G., Nossal, G. J., and Lalor, P. A. 1991. Molecular characterization of single memory B cells. Nature 350:502–505.

    PubMed  CAS  Google Scholar 

  403. Klein, U., Kuppers, R., and Rajewsky, K. 1993. Human IgM+IgD+ B cells, the major B cell subset in the peripheral blood, express V kappa genes with no or little somatic mutation throughout life. Eur. J. Immunol. 23:3272–3277.

    PubMed  CAS  Google Scholar 

  404. Gray, D. 1993. Immunological memory. Annu. Rev. Immunol. 11:49–77.

    PubMed  CAS  Google Scholar 

  405. Gu, H., Tarlinton, D., Muller, W., Rajewsky, K., and Forster, I. 1991. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173:1357–1371.

    PubMed  CAS  Google Scholar 

  406. Nicholson, I. C., Brisco, M. J., and Zola, H. 1995. Memory B-lymphocytes in human tonsil do not express surface IgD. J. Immunol. 154:1105–1110.

    PubMed  CAS  Google Scholar 

  407. Liu, Y. J., de Bouteiller, O., Arpin, C., Briere, F., Galibert, L., Ho, S., Martinez Valdez, H., Banchereau, J., and Lebecque, S. 1996. Normal human IgD+IgM-germinal center B cells can express up to 80 mutations in the variable region of their IgD transcripts. Immunity 4:603–613.

    PubMed  CAS  Google Scholar 

  408. Zilron, I. M., Mosier, D. E., and Paul, W. E. 1977. The role of surface IgD in the response to thymicindependent antigens. J. Exp. Med. 146:1707–1718.

    Google Scholar 

  409. Cambier, J. C., Ligler, F. S., Uhr, J. W., Kettman, J., and Vietta, E. S. 1978. Blocking of primary in vitro antibody responses to thymus-independent and thymus-dcpcndent antigens with antiserum specific for IgM and IgD. Proc. Natl. Acad. Sci. USA 75:432–439.

    PubMed  CAS  Google Scholar 

  410. Rocs, J., and Rajewsky, K. 1993. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J. Exp. Med. 177:45–55.

    Google Scholar 

  411. Nitschke, L., Kosco, M. H., Kohler, G., and Lamers, M. C. 1993. Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and-dependent antigens. Proc. Natl. Acad. Sci. USA 90:1887–1891.

    PubMed  CAS  Google Scholar 

  412. Roes, J., and Rajewsky, K. 1991. Cell autonomous expression of IgD is not essential for the maturation of conventional B cells. Int. Immunol. 3:1367–1371.

    PubMed  CAS  Google Scholar 

  413. Netzlin, R. 1990. Internal movements in immunoglobulin molecules. Adv. Immunol. 48:1.

    Google Scholar 

  414. Swenson, C. D., Van Vollenhoven, R. F., Xue, B., Siskind, G. W., Thorbecke, G. J., and Coico, R. F. 1988. Physiology of IgD. IX. Effect of IgD on immunoglobulin production in young and old mice. Eur. J. Immunol. 18:13–20.

    PubMed  CAS  Google Scholar 

  415. Finkelman, F. D., Snapper, C. M., Mountz, J. D., and Katona, I. M. 1987. Polyclonal activation of the murine immune system by a goat antibody to mouse IgD. IX. Induction of a polyclonal IgE response. J. Immunol. 138:2826–2830.

    PubMed  CAS  Google Scholar 

  416. Kricek, F., Ruf, C., Zunic, M., De Jong, G., Dukor, P., and Bahr, G. M. 1995. Induction in mice of serum IgE levels after treatment with anti-mouse IgD antibodies is preceded by differential modulation of tissue cytokine gene transcription. Eur. J. Immunol. 25:936–941.

    PubMed  CAS  Google Scholar 

  417. Matsuzaki, G., Song, F., and Nomoto, K. 1996. Suppression of T-helper type-1 immune response against Listeria-monocytogenes by treatment of mice with goat antibodies to mouse IgD. Immunology 87:15–20.

    PubMed  CAS  Google Scholar 

  418. Dieter, M. P., French, J. E., Boorman, G. A., and Luster, M. I. 1987. Metabolic characterization of mouse bone marrow cells responsive to estrogenic inhibition: Hexose monophosphate shunt enzyme activity in enriched populations of mature cells and progenitor cells. J. Leukoc. Biol. 41:212–219.

    PubMed  CAS  Google Scholar 

  419. Peng, Z., Fisher, R., and Adkinson, N. F., Jr. 1991. Total serum IgD is increased in atopic subjects. Allergy 46:436–444.

    PubMed  CAS  Google Scholar 

  420. Zhang, M, Nichus, J., Brunnee, T., Kleinetebbe, J., O’Connor, A., and Kunkel, G. 1994. Measurement of allergen-specific IgD and correlation with allergen-specific IgE. Scand. J. Immunol. 40:502–508.

    PubMed  CAS  Google Scholar 

  421. Allen, J. E., and Maizels, R. M. 1996. Immunology of human helminth infection. Int. Arch. Allergy Immunol. 109:3–10.

    PubMed  CAS  Google Scholar 

  422. Gouinni, A. S., Lamkhioued, B., Ochiai, K., Tanaka, Y., Delaporte, E., Capron, A., Kinet, J. P., and Capron, M. 1994. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367:183–186.

    Google Scholar 

  423. Barnes, P. J. 1991. Biochemistry of asthma. Trends Biochem. Sci. 16:365–369.

    PubMed  CAS  Google Scholar 

  424. Mudde, G. C., Bheekha, R., and Bruijnzeelkoomen, C. A. F. M. 1995. IgE-mediated antigen presentation. Allergy 50:193–199.

    PubMed  CAS  Google Scholar 

  425. Robbins, J. B., Schneerson, R., and Szu, S. C. 1995. Perspective:hypothesis:serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J. Infect. Din. 171:1387–1398.

    CAS  Google Scholar 

  426. Papadea, C., and Check, I. J. 1989. Human immunoglobulin G and immunoglobulin G subclasses: Biochemical, genetic, and clinical aspects. Crit. Rev. Clin. Lab. Sci. 27:27–58.

    PubMed  CAS  Google Scholar 

  427. Sun, L., Luce, M. J., Ren, K., Ha, H., and Burrows, P. D. 1995. Identification of polymorphisms in the constant region of IgG3: The missing mouse allotype. Int. Immunol. 7:337–341.

    PubMed  CAS  Google Scholar 

  428. Steinberg, A. G., Morell, A., Skvaril, F., and Van Loghem, E. 1973. The effect of Gm(23) on the concentration of IgG2 and IgG4 in normal human serum. J. Immunol. 110:1642–1651.

    PubMed  CAS  Google Scholar 

  429. Yount, W. J., Kunkel, H. G., and Litwin, S. 1967. Studies of the VI (gamma-2C) subgroup of gamma globulin. A relationship between concentration and genetic type among normal individuals. J. Exp. Med. 125:177–188.

    PubMed  CAS  Google Scholar 

  430. Brekke, O. H., Michaelsen, T. E., and Sandlie, I. 1995. The structural requirements for complement activation by IgG: Does it hinge on the hinge? Immunol. Today 16:85–90.

    PubMed  CAS  Google Scholar 

  431. Dangl, J. L., Wensel, T. G., Morrison, S. L., Stryer, L., Herzenberg, L. A., and Oi, V. T. 1988. Segmental flexibility and complement fixation of genetically engineered chimeric human, rabbit and mouse antibodies. EMBO J. 7:1989–1994.

    PubMed  CAS  Google Scholar 

  432. Winkelhake, J. L. 1978. Immunoglobulin structure and effector function. Immunochemistry 15:695–714.

    PubMed  CAS  Google Scholar 

  433. Tao, M. H., and Morrison, S. L. 1989. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143:2595–2601.

    PubMed  CAS  Google Scholar 

  434. Huck, S., Fort, P., Crawford, D. H., LeFranc, M. P., and Lefranc, G. 1986. Sequence of a human immunoglobulin gamma 3 heavy chain constant region gene: Comparison with the other human C gamma genes. Nucleic Acids Res. 14:1779–1789.

    PubMed  CAS  Google Scholar 

  435. Brekke, O. H., Michaelsen, T. E., Sandin, R., and Sandlie, I. 1993. Activation of complement by an IgG molecule without a genetic hinge. Nature 363:628–630.

    PubMed  CAS  Google Scholar 

  436. Tan, L. K., Shopes, R. J., Oi, V. T., and Morrison, S. L. 1990. Influence of the hinge region on complement activation, Clq binding, and segmental flexibility in chimeric human immunoglobulins. Proc. Natl. Acad. Sci. USA 87:162–166.

    PubMed  CAS  Google Scholar 

  437. Norderhaug, L., Brekke, O. H., Bremnes, B,, Sandin, R., Aase, A., Michaelsen, T. E., and Sandlie, I. 1991. Chimeric mouse human IgG3 antibodies with an IgG4-like hinge region induce complement-mediated lysis more efficiently than IgG3 with normal hinge. Eur. J. Immunol. 21:2379–2384.

    PubMed  CAS  Google Scholar 

  438. Clynes, R., and Ravetch, J. V. 1995. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3:21–26.

    PubMed  CAS  Google Scholar 

  439. Ales Martinez., J. E., Cuende, E., Martinez, C., Parkhouse, R. M., Pezzi, L., and Scott, D. W. 1991. Signalling in B cells. Immunol. Today 12:201–205.

    PubMed  CAS  Google Scholar 

  440. Goding, J. M., and Layton, J. E. 1976. Antigen-induced co-capping of IgM and IgD-like receptors on murine B cells. J. Exp. Med. 144:852–857.

    Google Scholar 

  441. Goodnow, C. C., Crosbie, J., Jorgensen, H., Brink, R. A., and Basten, A. 1989. Induction of self-tolerance in mature peripheral B lymphocytes. Nature 342:385–391.

    PubMed  CAS  Google Scholar 

  442. Monteiro, R. C., Hostoffer, R. W., Cooper, M. D., Bonner, J. R., Gartland, G. L., and Kubagawa, H. 1993. Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J. Clin. Invest. 92:1681–1685.

    PubMed  CAS  Google Scholar 

  443. Monteiro, R. C., Kubagawa, H., and Cooper, M. D. 1990. Cellular distribution, regulation, and biochemical nature of an Fc alpha receptor in humans. J. Exp. Med. 171:597–613.

    PubMed  CAS  Google Scholar 

  444. Patry, C, Sibille, Y., Lehuen, A., and Monteiro, R. C. 1996. Identification of Fc-alpha receptor (CD89) isoforms generated by alternative splicing that are differentially expressed between blood monocytes and alveolar macrophages. J. Immunol. 156:4442–4448.

    PubMed  CAS  Google Scholar 

  445. Sibille, Y., Chatelain, B., Staquet, P., Merrill, W. W., Delacroix, D. L., and Vaerman, J. P. 1989. Surface IgA and Fc-alpha receptors on human alveolar macrophages from normal subjects and from patients with sarcoidosis. Am. Rev. Respir. Dis. 139:740–747.

    PubMed  CAS  Google Scholar 

  446. Albrechtsen, M., Yeaman, G. R., and Kerr, M. A. 1988. Characterization of the IgA receptor from human polymorphonuclear leucocytes. Immunology 64:201–205.

    PubMed  CAS  Google Scholar 

  447. Pfefferkorn, L. C., and Yeaman, G. R. 1994. Association of IgA-Fc receptors (Fc alpha R) with Fc epsilon RI gamma 2 subunits in U937 cells. Aggregation induces the tyrosine phosphorylation of gamma 2. J. Immunol. 153:3228–3236.

    PubMed  CAS  Google Scholar 

  448. Patry, C., Herbelin, A., Lehuen, A., Bach, J. F., and Monteiro, R. C. 1995. Fc alpha receptors mediate release of tumour necrosis factor-alpha and interleukin-6 by human monocytes following receptor aggregation. Immunology 86:1–5.

    PubMed  CAS  Google Scholar 

  449. Shen, L. 1992. Receptors for IgA on phagocytic cells. Immunol. Res. 11:273–282.

    PubMed  CAS  Google Scholar 

  450. Hostoffer, R. W., Krukovets, I., and Berger, M. 1994. Enhancement of tumor necrosis factor-alpha of Fc alpha receptor expression and IgA-mediated superoxide generation and killing of Pseudomonas aeruginosa by polymorphonuclear leukocytes. J Infect. Dis. 170:82–87.

    PubMed  CAS  Google Scholar 

  451. Reterink, T. J., Levarht, E. W., Klar Mohamad, N., van Es, L. A., and Daha, M. R. 1996. Transforming growth factor-beta 1 (TGF-beta 1) down-regulates IgA Fc-receptor (CD89) expression on human monocytes. Clin. Exp. Immunol. 103:161–166.

    PubMed  CAS  Google Scholar 

  452. Grossetete, B., Viard, J. P., Lehuen, A., Bach, J. F., and Monteiro, R. C. 1995. Impaired Fc alpha receptor expression is linked to increased immunoglobin A levels and disease progression in HIV-1-infected patients. AIDS 9:229–234.

    PubMed  CAS  Google Scholar 

  453. Carayannopoulos, L., Hexham, J. M., and Capra, J. D. 1996. Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Calpha2 and Calpha3 in human IgA1. J. Exp. Med. 183:1579–1586.

    PubMed  CAS  Google Scholar 

  454. Vandijk, T. B., Bracke, M., Caldenhoven, E., Raaijmakers, J. A. M., and Lammers, J. W. J. 1996. Cloning and characterization of FcalphaRb, a novel Fc-alpha receptor (CD89) isoform expressed in eosinophils and neutrophils. Blood 88:4229–4238.

    CAS  Google Scholar 

  455. Marshall, J. S., and Bienenstock, J. 1994. The role of mast cells in inflammatory reactions of the airways, skin and intestine. Curr. Opin. Immunol. 6:853–859.

    PubMed  CAS  Google Scholar 

  456. Daeeron, M., Malbec, O., Latour, S., Arock, M., and Fridman, W. H. 1995. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J. Clin. Invest. 95:577–585.

    Google Scholar 

  457. Weber, S., Krueger Krasagakes, S., Grabbe, J., Zuberbier, T., and Czarnetzki, B. M. 1995. Mast cells. Int. J. Dermatol. 34:1–10.

    PubMed  CAS  Google Scholar 

  458. Wang, B., Rieger, A., Kilgus, O., Ochiai, K., Maurer, D., Foedinger, D., Kinet, J. P., and Stingl, G. 1992. Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J. Exp. Med. 175:1353–1365.

    PubMed  CAS  Google Scholar 

  459. Bieber, T., de la Salle, H., Wollenberg, A., Hakimi, J., Chizzonite, R., Ring, J., Hanau, D., and de la Salle, C. 1992. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI). J. Exp. Med. 175:1285–1290.

    PubMed  CAS  Google Scholar 

  460. Bieber, T. 1994. Fc epsilon RI on human Langerhans cells: A receptor in search of new functions. Immunol. Today 15:52–53.

    PubMed  CAS  Google Scholar 

  461. Maurer, D., and Stingl, G. 1995. Immunoglobulin E-binding structures on antigen-presenting cells present in skin and blood. J. Invest. Dermatol. 104:707–710.

    PubMed  CAS  Google Scholar 

  462. Knol, E. F., Verhoeven, A. J., and Roos, D. 1993. Stimulus secretion coupling in human basophilic granulocytes. Clin. Exp. Allergy 23:471–480.

    PubMed  CAS  Google Scholar 

  463. Schroeder, J. T., Kagey Sobotka, A., and Lichtenstein, L. M. 1995. The role of the basophil in allergic inflammation. Allergy 50:463–472.

    PubMed  CAS  Google Scholar 

  464. Capron, M., Soussi Gounni, A., Morita, M., Truong, M. J., Prin, L., Kinet, J. P., and Capron, A. 1995. Eosinophils: From low-to high-affinity immunoglobulin E receptors. Allergy 50:20–23.

    PubMed  CAS  Google Scholar 

  465. Gounni, A. S., Lamkhioued, B., Delaporte, E., Dubost, A., Kinet, J. P., Capron, A., and Capron, M. 1994. The high-affinity IgE receptor on eosinophils: From allergy to parasites or from parasites to allergy? J. Allergy Clin. Immunol. 94:1214–1216.

    PubMed  CAS  Google Scholar 

  466. Hashimoto, S., Koh, K., Tomita, Y., Amemiya, E., Sawada, S., Yodoi, J., and Horie, T. 1995. TNF-alpha regulates IL-4-induced Fc epsilon RII/CD23 gene expression and soluble Fc epsilon RII release by human monocytes. Int. Immunol. 7:705–713.

    PubMed  CAS  Google Scholar 

  467. Edberg, J. C., Lin, C. T., Lau, D., Unkeless, J. C., and Kimberly, R. P. 1995. The Ca2+ dependence of human Fc gamma receptor-initiated phagocytosis. J. Biol. Chem. 270:22301–22307.

    PubMed  CAS  Google Scholar 

  468. Lecoanet Henchoz, S., Gauchat, J. F., Aubry, J. P., Graber, P., Life, P., Paul Eugene, N., Ferrua, B., Corbi, A. L., Dugas, B., Plater Zyberk, C., and Bonnefoy, J. Y. 1995. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 3:119–125.

    PubMed  CAS  Google Scholar 

  469. Maurer, D., Ebner, C., Reininger, B., Fiebiger, E., Kraft, D., Kinet, J. P., and Stingl, G. 1995. The high affinity IgE receptor (Fc epsilon R1) mediates IgE-dependent allergen presentation. J. Immunol. 154:6285–6290.

    PubMed  CAS  Google Scholar 

  470. Ra, C., Jouvin, M. H., Blank, U., and Kinet, J. P. 1989. A macrophage Fc gamma receptor and the mast cell receptor for IgE share an identical subunit. Nature 341:752–754.

    PubMed  CAS  Google Scholar 

  471. Beaven, M. A., and Metzger, H. 1993. Signal transduction by Fc receptors: The Fc epsilon RI case. Immunol. Today 14:222–226.

    PubMed  CAS  Google Scholar 

  472. Blank, U., Ra, C., Miller, L., White, K., Metzger, H., and Kinet, J. P. 1989. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 337:187–189.

    PubMed  CAS  Google Scholar 

  473. Dombrowicz, D., Flamand, V., Brigman, K. K., Roller, B. H., and Kinet, J. P. 1993. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Cell 75:969–976.

    PubMed  CAS  Google Scholar 

  474. Takai, T., Li, M., Sylvestre, D., Clynes, R., and Ravetch, J. V. 1994. FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 76:519–529.

    PubMed  CAS  Google Scholar 

  475. Hagen, M., Sacco, R. E., Sandor, M., Best, C., Nambu, M., and Lynch, R. G. 1995. The Fc epsilon RII/CD23 gene is actively transcribed during all stages of murine B-lymphocyte development. Mol. Immunol. 32:1245–1257.

    PubMed  CAS  Google Scholar 

  476. Zhang, H. M., Tanaka, Y., Maeda, K., Anan, S., and Yoshida, H. 1996. Affinity-purified Dermatophagoides farinae antigen induces CD23 on T and B lymphocytes and monocytes specifically in patients with atopic dermatitis. J. Dermatol. Sci. 11:202–208.

    PubMed  CAS  Google Scholar 

  477. Carini, C., and Fratazzi, C. 1996. CD23 expression in activated human T cells is enhanced by interleukin-7. Int. Arch. Allergy Immunol. 110:23–30.

    PubMed  CAS  Google Scholar 

  478. Yokota, A., Yukawa, K., Yamamoto, A., Sugiyama, K., Suemura, M., Tashiro, Y., Kishimoto, T., and Kikutani, H. 1992. Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: Identification of the critical cytoplasmic domains. Proc. Natl. Acad. Sci. USA 89:5030–5034.

    PubMed  CAS  Google Scholar 

  479. Sarfati, M., Fournier, S., Wu, C. Y., and Delespesse, G. 1992. Expression, regulation and function of human Fc epsilon RII (CD23) antigen. Immunol. Res. 11:260–272.

    PubMed  CAS  Google Scholar 

  480. Yu, P., Kosco Vilbois, M., Richards, M., Kohler, G., and Lamers, M. C. 1994. Negative feedback regulation of IgE synthesis by murine CD23. Nature 369:753–756.

    PubMed  CAS  Google Scholar 

  481. Bonnefoy, J. Y., Gauchat, J. F., Life, P., Graber, P., Aubry, J. P., and Lecoanet Henchoz, S. 1995. Regulation of IgE synthesis by CD23/CD21 interaction. Int. Arch. Allergy Immunol. 107:40–42.

    PubMed  CAS  Google Scholar 

  482. Fujiwara, H., Kikutani, H., Suematsu, S., Naka, T., Yoshida, K., Tanaka, T., Suemura, M., Matsumoto, N., Kojima, S., et al. 1994. The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc. Natl. Acad. Sci. USA 91:6835–6839.

    PubMed  CAS  Google Scholar 

  483. Fremeaux Bacchi, V., Bernard, I., Maillet, F., Mani, J. C., Fontaine, M., Bonnefoy, J. Y., Kazatchkine, M. D., and Fischer, E. 1996. Human lymphocytes shed a soluble form of CD21 (the C3dg/Epstein-Barr virus receptor, CR2) that binds iC3b and CD23. Eur. J. Immunol. 26:1497–1503.

    PubMed  CAS  Google Scholar 

  484. Henchoz Lecoanet, S., Jeannin, P., Aubry, J. P., Graber, P., Bradshaw, C. G., Pochon, S., and Bonnefoy, J. Y. 1996. The Epstein-Barr virus-binding site on CD21 is involved in CD23 binding and interleukin-4-induced IgE and IgG4 production by human B cells. Immunology 88:35–39.

    PubMed  CAS  Google Scholar 

  485. Dugas, N., Vouldoukis, I., Becherel, P., Arock, M., Debre, P., Tardieu, M., Mossalayi, D. M., Delfraissy, J. F., Kolb, J. P., and Dugas, B. 1996. Triggering of CD23b antigen by anti-CD23 monoclonal antibodies induces interleukin-10 production by human macrophages. Eur. J. Immunol. 26:1394–1398.

    PubMed  CAS  Google Scholar 

  486. Dugas, B., Mossalayi, M. D., Damais, C., and Kolb, J. P. 1995. Nitric oxide production by human monocytes: Evidence for a role of CD23. Immunol. Today 16:574–580.

    PubMed  CAS  Google Scholar 

  487. Yamaoka, K. A., Arock, M., Issaly, F., Dugas, N., Le Goff, L., and Kolb, J. P. 1996. Granulocyte macrophage colony stimulating factor induces Fc epsilon RII/CD23 expression on normal human polymorphonuclear neutrophils. Int. Immunol. 8:479–490.

    PubMed  CAS  Google Scholar 

  488. Paterson, R. L., Lack, G., Domenico, J. M., Delespesse, G., Leung, D. Y., Finkel, T. H., and Gelfand, E. W. 1996. Triggering through CD40 promotes interleukin-4-induced CD23 production and enhanced soluble CD23 release in atopic disease. Eur. J. Immunol. 26:1979–1984.

    PubMed  CAS  Google Scholar 

  489. Kaufmann, Y., Golstein, P., Pierres, M., Springer, T. A., and Eshhar, Z. 1982. LFA-I but not Lyt-2 is associated with killing activity of cytotoxic T lymphocyte hybridomas. Nature 300:357–360.

    PubMed  CAS  Google Scholar 

  490. Burlinson, E. L., Graber, P., Bonnefoy, J. Y., Ozanne, B. W., and Cushley, W. 1996. Soluble CD40 ligand induces expression of CD25 and CD23 in resting human tonsillar B lymphocytes. Eur. J. Immunol. 26:1069–1073.

    PubMed  CAS  Google Scholar 

  491. Ruzek, M. C., Billadeau, D., and Mathur, A. 1996. A combination of IL-10 and direct contact with plasma cell tumors decreases CD23 expression on splenic B cells. J. Immunol. 156:2124–2132.

    PubMed  CAS  Google Scholar 

  492. Kimberly, R. P., Salmon, J. E., and Edberg, J. C. 1995. Receptors for immunoglobulin G. Molecular diversity and implications for disease. Arthritis Rheum. 38:306–314.

    PubMed  CAS  Google Scholar 

  493. Unkeless, J. C., Shen, Z., Lin, C. W., and DeBeus, E. 1995. Function of human Fc gamma RIIA and Fc gamma RI1IB. Semin. Immunol. 7:37–44.

    PubMed  CAS  Google Scholar 

  494. Indik, Z. K., Park, J. G., Hunter, S., and Schreiber, A. D. 1995. Structure/function relationships of Fc gamma receptors in phagocytosis. Semin. Immunol. 7:45–54.

    PubMed  CAS  Google Scholar 

  495. Fanger, M. W., and Erbe, D. V. 1992. Fc gamma receptors in cancer and infectious disease. Immunol. Res. 11:203–216.

    PubMed  CAS  Google Scholar 

  496. Unkeless, J. C. 1989. Function and heterogeneity of human Fc receptors for immunoglobulin G. J. Clin. Invest. 83:355–361.

    PubMed  CAS  Google Scholar 

  497. Landor, M. 1995. Maternal-fetal transfer of immunoglobulins. Ann. Allergy Asthma Immunol. 74:279–283.

    PubMed  CAS  Google Scholar 

  498. Saji, F., Koyama, M., and Matsuzaki, N. 1994. Current topic: Human placenta) Fc receptors. Placenta 15:453–466.

    PubMed  CAS  Google Scholar 

  499. Galon, J., Bouchard, C., Fridman, W. H., and Sautes, C. 1995. Ligands and biological activities of soluble Fc gamma receptors. Immunol. Lett. 44:175–181.

    PubMed  CAS  Google Scholar 

  500. Hartnell, A., Kay, A. B., and Wardlaw, A. J. 1992. IFN-gamma induces expression of Fc gamma RIII (CD16) on human eosinophils. J. Immunol. 148:1471–1478.

    PubMed  CAS  Google Scholar 

  501. Pan, L. Y., Mendel, D. B., Zurlo, J., and Guyre, P. M. 1990. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils, and U-937 cells. J. Immunol. 145:267–275.

    PubMed  CAS  Google Scholar 

  502. Olweus, J., Lund Johansen, F., and Terstappen, L. W. 1995. CD64/Fc gamma RI is a granulo-monocytic lineage marker on CD34+ hematopoietic progenitor cells. Blood 85:2402–2413.

    PubMed  CAS  Google Scholar 

  503. Unkeless, J. C., Scigliano, E., and Freedman, V. H. 1988. Structure and function of human and murine receptors for IgG. Annu. Rev. Immunol. 6:251–281.

    PubMed  CAS  Google Scholar 

  504. Sivo, J., Politis, A. D., and Vogel, S. N. 1993. Differential effects of interferon-gamma and glucocorticoids on Fc gamma R gene expression in murine macrophages. J. Leukoc. Biol. 54:451–457.

    PubMed  CAS  Google Scholar 

  505. Prins, J. B., Todd, J. A., Rodrigues, N. R., Ghosh, S., Hogarth, P. M., Wicker, L. S., Gaffney, E., Podolin, P. L., Fischer, P. A., Sirotina, A., et al. 1993. Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. Science 260:695–698.

    PubMed  CAS  Google Scholar 

  506. Teillaud, J. L., Bouchard, C., Astier, A., Teillaud, C., Tartour, E., Michon, J., Galinha, A., Moncuit, J., Mazieres, N., and Spagnoli, R. 1994. Natural and recombinant soluble low-affinity Fc gamma R: Detection, purification, and functional activities. Immunomelhods 4:48–64.

    CAS  Google Scholar 

  507. Takizawa, F., Adamczewski, M., and Kinet, J. P. 1992. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII. J. Exp. Med. 176:469–475.

    PubMed  CAS  Google Scholar 

  508. Hulett, M. D., and Hogarth, P. M. 1994. Molecular basis of Fc receptor function. Adv. Immunol. 57:1–127.

    PubMed  CAS  Google Scholar 

  509. Mantzioris, B. X., Berger, M. F., Sewell, W., and Zola, H. 1993. Expression of the Fc receptor for IgG (Fc gamma RII/CDw32) by human circulating T and B lymphocytes. J. Immunol. 150:5175–5184.

    PubMed  CAS  Google Scholar 

  510. Schmitt, D. A., Hanau, D., Bieber, T., Dezutter Dambuyant, C., Schmitt, D., Fabre, M., Pauly, G., and Cazenave, J. P. 1990. Human epidermal Langerhans cells express only the 40-kilodalton Fc gamma receptor (FcRII). J. Immunol. 144:4284–4290.

    PubMed  CAS  Google Scholar 

  511. Vaughn, M., Taylor, M., and Mohanakumar, T. 1985. Characterization of human IgG Fc receptors. J. Immunol. 135:4059–4065.

    PubMed  CAS  Google Scholar 

  512. Katz, H. R., Arm, J. P., Benson, A. C., and Austen, K. F. 1990. Maturation-related changes in the expression of Fc gamma RIII and Fc gamma RII on mouse mast cells derived in vitro and in vivo. J. Immunol. 145:3412–3417.

    PubMed  CAS  Google Scholar 

  513. Edberg, J. C., Redecha, P. B., Salmon, J. E., and Kimberly, R. P. 1989. Human Fc gamma RIII (CD16). Isoforms with distinct allelic expression, extracellular domains, and membrane linkages on polymorphonuclear and natural killer cells. J. Immunol. 143:1642–1649.

    PubMed  CAS  Google Scholar 

  514. Weinshank, R. L., Luster, A. D., and Ravetch, J. V. 1988. Function and regulation of a murine macrophage-specific IgG Fc receptor, Fc gamma R-alpha. J. Exp. Med. 167:1909–1925.

    PubMed  CAS  Google Scholar 

  515. Clarkson, S. B., Kimberly, R. P., Valinsky, J. E., Witmer, M. D., Bussel, J. B., Nachman, R. L., and Unkeless, J. C. 1986. Blockade of clearance of immune complexes by an anti-Fc gamma receptor monoclonal antibody. J. Exp. Med. 164:474–489.

    PubMed  CAS  Google Scholar 

  516. Buckle, A. M., and Hogg, N. 1989. The effect of IFN-gamma and colony-stimulating factors on the expression of neutrophil cell membrane receptors. J. Immunol. 143:2295–2301.

    PubMed  CAS  Google Scholar 

  517. Solvason, N., and Kearney, J. F. 1992. The human fetal omentum: A site of B cell generation. J. Exp. Med. 175:397–404.

    PubMed  CAS  Google Scholar 

  518. Rolink, A., Haasner, D., Nishikawa, S., and Melchers, F. 1993. Changes in frequencies of clonable pre B cells during life in different lymphoid organs of mice. Blood 81:2290–2300.

    PubMed  CAS  Google Scholar 

  519. Rajewsky, K. 1992. Early and late B-cell development in the mouse. Curr. Opin. Immunol. 4:171–176.

    PubMed  CAS  Google Scholar 

  520. Tsubata, T., and Nishikawa, S. 1991. Molecular and cellular aspects of early B-cell development. Curr. Opin. Immunol. 3:186–192.

    PubMed  CAS  Google Scholar 

  521. Rolink, A., and Melchers, F. 1993. Generation and regeneration of cells of the B-lymphocyte lineage. Curr. Opin. Immunol. 5:207–217.

    PubMed  CAS  Google Scholar 

  522. Osmond, D. G. 1991. Proliferation kinetics and the lifespan of B cells in central and peripheral lymphoid organs. Curr. Opin. Immunol. 3:179–185.

    PubMed  CAS  Google Scholar 

  523. Davis, S. J., Davies, E. A., Barclay, A. N., Daenke, S., Bodine, D., Jones, E. Y., Stuart, D. I., Butters, T. D., Dwek, R. A., and Van-der-Merwe, P. A. 1995. Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J. Biol. Chem. 270:369–375.

    PubMed  Google Scholar 

  524. Wright, A., Tao, M. H., Kabat, E. A., and Morrison, S. L. 1991. Antibody variable region glycosylation: Position effects on antigen binding and carbohydrate structure. EMBO J. 10:2717–2723.

    PubMed  CAS  Google Scholar 

  525. Middaugh, C. R., and Litman, G. W. 1987. Atypical glycosylation of an IgG monoclonal cryoimmunoglobulin. J. Biol. Chem. 262:3671–3673.

    PubMed  CAS  Google Scholar 

  526. Co, M. S., Scheinberg, D. A., Avdalovic, N. M., McGraw, K., Vasquez, M., Caron, P. C., and Queen, C. 1993. Genetically engineered deglycosylation of the variable domain increases the affinity of an anti-CD33 monoclonal antibody. Mol. Immunol. 30:1361–1367.

    PubMed  CAS  Google Scholar 

  527. Miletic, V. D., and Frank, M. M. 1995. Complement immunoglobulin interactions. Curr. Opin. Immunol. 7:41–47.

    PubMed  CAS  Google Scholar 

  528. Wright, A., and Morrison, S. L. 1994. Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin GI. J. Exp. Med. 180:1087–1096.

    PubMed  CAS  Google Scholar 

  529. Tao, M. H., and Morrison, S. L. 1989. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143:2595–2601.

    PubMed  CAS  Google Scholar 

  530. Axford, J. S., Sumar, N., Alavi, A., Isenberg, D. A., Young, A., Bodman, K. B., and Roitt, I. M. 1992. Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J. Clin. Invest. 89:1021–1031.

    PubMed  CAS  Google Scholar 

  531. Roccatello, D., Picciotto, G., Torchio, M., Ropolo, R., Ferro, M., Franceschini, R., Quattrocchio, G., Cacace, G., and Coppo, R. 1993. Removal systems of immunoglobulin A and immunoglobulin A containing complexes in IgA nephropathy and cirrhosis patients. The role of asialoglycoprotein receptors, Lab. Invest. 69:714–723.

    PubMed  CAS  Google Scholar 

  532. Andre, P. M., Le Pogamp, P., and Chevet, D. 1990. Impairment of jacalin binding to serum IgA in IgA nephropathy. J. Clin. Lab. Anal. 4:115–119.

    PubMed  CAS  Google Scholar 

  533. Tomlinson, I. M., Walter, G., Jones, P. T., Dear, P. H., Sonnhammer, E. L. L., and Winter, G. 1996. The imprint of somatic hypermutation on the repertoire of human germline-v genes. J. Mot. Biol. 256:813–817.

    CAS  Google Scholar 

  534. Hashimoto, S., Gregersen, P. K., and Chiorazzi, N. 1993. The human Ig-beta cDNA sequence, a homologue of murine B29, is identical in B cell and plasma cell lines producing all the human Ig isotypes. J. Immunol. 150:491–498.

    PubMed  CAS  Google Scholar 

  535. Mestecky, J. 1988. Immunobiology of IgA. Am. J. Kidney Dis. 12:378–383.

    PubMed  CAS  Google Scholar 

  536. Papadea, C., and Check, I. J. 1989. Human immunoglobulin G and immunoglobulin G subclasses: Biochemical, genetic, and clinical aspects. Crit. Rev. Clin. Lab. Sci. 27:27–58.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

(1998). B-Lymphocyte Genes. In: Handbook of Imune Response Genes. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-31180-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-31180-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45647-3

  • Online ISBN: 978-0-585-31180-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics