Skip to main content

Automatic Detection and Classification of Coronal Holes and Filaments Based on EUV and Magnetogram Observations of the Solar Disk

  • Chapter
Solar Image Analysis and Visualization

Abstract

A new method for the automated detection of coronal holes and filaments on the solar disk is presented. The starting point is coronal images taken by the Extreme Ultraviolet Telescope on the Solar and Heliospheric Observatory (SOHO/EIT) in the Fe ix/x 171 Å, Fe xii 195 Å, and He ii 304 Å extreme ultraviolet (EUV) lines and the corresponding full-disk magnetograms from the Michelson Doppler Imager (SOHO/MDI) from different phases of the solar cycle. The images are processed to enhance their contrast and to enable the automatic detection of the two candidate features, which are visually indistinguishable in these images. Comparisons are made with existing databases, such as the He i 10830 Å NSO/Kitt Peak coronal-hole maps and the Solar Feature Catalog (SFC) from the European Grid of Solar Observations (EGSO), to discriminate between the two features. By mapping the features onto the corresponding magnetograms, distinct magnetic signatures are then derived. Coronal holes are found to have a skewed distribution of magnetic-field intensities, with values often reaching 100 – 200 gauss, and a relative magnetic-flux imbalance. Filaments, in contrast, have a symmetric distribution of field intensity values around zero, have smaller magnetic-field intensity than coronal holes, and lie along a magnetic-field reversal line. The identification of candidate features from the processed images and the determination of their distinct magnetic signatures are then combined to achieve the automated detection of coronal holes and filaments from EUV images of the solar disk. Application of this technique to all three wavelengths does not yield identical results. Furthermore, the best agreement among all three wavelengths and NSO/Kitt Peak coronal-hole maps occurs during the declining phase of solar activity. The He ii data mostly fail to yield the location of filaments at solar minimum and provide only a subset at the declining phase or peak of the solar cycle. However, the Fe ix/x 171 Å and Fe xii 195 Å data yield a larger number of filaments than the Hα data of the SFC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboudarham, J., Scholl, I., Fuller, N., Fouesneau, M., Galametz, M., Gonon, F., Maire, A., Leroy, Y.: 2007, Automatic detection and tracking of filaments to fill-in a solar feature database. Ann. Geophys., in press.

    Google Scholar 

  • Andretta, V., Jones, H.P.: 1997, On the role of the solar corona and transition region in the excitation of the spectrum of neutral helium. Astrophys. J. 489, 375 – 394.

    Article  ADS  Google Scholar 

  • Bell, B., Noci, G.: 1976, Intensity of the Fe xv emission line corona, the level of geomagnetic activity, and the velocity of the solar wind. J. Geophys. Res. 81, 4508 – 4516.

    Article  ADS  Google Scholar 

  • Bentley, R.D., Csillaghy, A., Scholl, I.: 2004, The European grid of solar observations. In: Quinn, P.J., Bridger, A. (eds.) Optimizing Scientific Return for Astronomy through Information Technologies, Proc. SPIE 5493, 170 – 177.

    Google Scholar 

  • Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312.

    Article  ADS  Google Scholar 

  • de Toma, G.D., Arge, C.N.: 2005, Multi-wavelength observations of coronal holes. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-scale Structures and Their Role in Solar Activity, CS-346, Publ. Astron. Soc. Pac., San Francisco, 251 – 260.

    Google Scholar 

  • Goldberg, L.: 1939, Transition probabilities for He I. Astrophys. J. 90, 414 – 428.

    Article  MATH  ADS  Google Scholar 

  • Gonzalez, R.C., Woods, R.E.: 2002, Digital Image Processing, Addison-Wesley Longman, Boston.

    Google Scholar 

  • Harvey, J.W., Sheeley, N.R. Jr.: 1977, A comparison of He II 304 Å and He I 10830 Å spectroheliograms. Solar Phys. 54, 343 – 351.

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31 – 52.

    Article  ADS  Google Scholar 

  • Harvey, K.L., Harvey, J.W., Sheeley, N.R. Jr.: 1982, Magnetic measurements of coronal holes during 1975–1980. Solar Phys. 79, 149 – 160.

    Article  ADS  Google Scholar 

  • Henney, C.J., Harvey, J.W.: 2005, Automated coronal hole detection using He 1083 nm spectroheliograms and photospheric magnetograms. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-scale Structures and Their Role in Solar Activity, CS-346, Publ. Astron. Soc. Pac., San Francisco, 261 – 268.

    Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505 – 525.

    Article  ADS  Google Scholar 

  • Liu, Y., Zhao, X., Hoeksema, T.: 2004, Correction of offset in MDI/SOHO magnetograms. Solar Phys. 219, 39 – 53.

    Article  ADS  Google Scholar 

  • Malanushenko, O.V., Jones, H.P.: 2005, Differentiating coronal holes from the quiet Sun by He 1083 nm imaging spectroscopy. Solar Phys. 226, 3 – 16.

    Article  ADS  Google Scholar 

  • Munro, R.H., Withbroe, G.L.: 1972, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511 – 520.

    Article  ADS  Google Scholar 

  • Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B.T.H., Zimmerman, J.B.: 1987, Adaptive histogram equalization and its variation. Comput. Vision Graphics Image Process. 39(3), 355 – 368.

    Article  Google Scholar 

  • Reeves, E.M., Parkinson, W.H.: 1970, An atlas of extreme-ultraviolet spectroheliograms from OSO-IV. Astrophys. J. Suppl. Ser. 21, 405 – 409.

    Article  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188.

    Article  ADS  Google Scholar 

  • Scholl, I.: 2003, Conception, réalisation et utilisation d’archives de données solaires spatiales. Ph.D. thesis, Université Paris 6, France.

    Google Scholar 

  • Sheeley, N.R. Jr., Harvey, J.W., Feldman, W.C.: 1976, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances – 1973 – 1976. Solar Phys. 49, 271 – 278.

    Article  ADS  Google Scholar 

  • Stark, J.A.: 2000, Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889 – 896.

    Article  ADS  Google Scholar 

  • Vaiana, G.S., Zombeck, M., Krieger, A.S., Timothy, A.F.: 1976, ATM observations – X-ray results. Astrophys. Space Sci. 39, 75 – 101.

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Aboudarham, J., Zharkov, S., Ipson, S.S., Benkhalil, A.K., Fuller, N.: 2005, Solar feature catalogues in EGSO. Solar Phys. 228, 361 – 375.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle F. Scholl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Scholl, I.F., Habbal, S.R. (2007). Automatic Detection and Classification of Coronal Holes and Filaments Based on EUV and Magnetogram Observations of the Solar Disk. In: Ireland, J., Young, C.A. (eds) Solar Image Analysis and Visualization. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98154-3_16

Download citation

Publish with us

Policies and ethics