Skip to main content

New Approach for Selective Vapor Sensing Using Structurally Colored Self-Assembled Films

  • Chapter
  • First Online:
Advanced Photonic Structures for Biological and Chemical Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1202 Accesses

Abstract

We demonstrate that selective sensing of multiple vapors can be accomplished using a structurally colored colloidal crystal film formed from composite core/shell nanospheres and multivariate spectral analysis of vapor response. To improve the detection of color changes of the sensing colloidal crystal film at relatively low vapor partial pressures (P/P 0 ≤ 0.1, where P is the partial pressure of vapor and P 0 is the saturation vapor pressure), we apply a differential spectroscopy measurement approach. The vapor-sensing selectivity is provided by the combination of the composite nature of the colloidal nanospheres in the film with the multivariate analysis of the spectral changes of the film reflectivity upon exposure to different vapors. The multianalyte sensing was demonstrated using a colloidal crystal film composed of 326-nm diameter core polystyrene spheres coated with a 20-nm thick silica shell. Discrimination of water, acetonitrile, toluene, and dichloromethane vapors using a single sensing colloidal crystal film was evaluated applying principal components analysis of the reflectivity spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zolotov, Y. A.; Ivanov, V. M.; Amelin, V. G., Chemical test methods of analysis, In Wilson & Wilson's Comprehensive Analytical Chemistry; Barcelo, D., Ed.; Elsevier, Amsterdam, 2002

    Google Scholar 

  2. Potyrailo, R. A.; Mirsky, V. M., Combinatorial and high-throughput development of sensing materials: The first ten years, Chem. Rev. 2008, 108, 770–813

    Article  CAS  Google Scholar 

  3. Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D., Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly, Science. 1993, 261, 585–588

    Article  CAS  Google Scholar 

  4. Rakow, N. A.; Suslick, K. S., A colorimetric sensor array for odour visualization, Nature. 2000, 406, 710–713

    Article  CAS  Google Scholar 

  5. Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature. 1997, 389, 829–832

    Article  CAS  Google Scholar 

  6. Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R., A porous silicon-based optical interferometric biosensor, Science. 1997, 278, 840–843

    Article  CAS  Google Scholar 

  7. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science. 1997, 277, 1078–1081

    Article  CAS  Google Scholar 

  8. Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications, Science. 2003, 299, 2045–2047

    Article  CAS  Google Scholar 

  9. Wehrspohn, R. B.; Schweizer, S. L.; Schilling, J.; Geppert, T.; Jamois, C.; Glatthaar, R.; Hahn, P.; Feisst, A.; Lambrecht, A., Application of photonic crystals for gas detection and sensing, In Photonic Crystals; Busch, K., Ed.; Wiley-VCH Verlag, Weinheim, Germany, 2004, 238–246

    Google Scholar 

  10. Benabid, F.; Couny, F.; Knight, J. C.; Birks, T. A.; Russell, P. S. J., Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres, Nature. 2005, 434, 488–491

    Article  CAS  Google Scholar 

  11. Amarie, D.; Onuta, T.-D.; Potyrailo, R.; Dragnea, B., Submicrometer cavity surface plasmon sensors, J. Phys. Chem. B. 2005, 109, 15515–15519

    Article  CAS  Google Scholar 

  12. Dovidenko, K.; Potyrailo, R. A.; Grande, J., Focused ion beam microscope as an analytical tool for nanoscale characterization of gradient-formulated polymeric sensor materials, In Combinatorial Methods and Informatics in Materials Science. Materials Research Society Symposium Proceedings; Fasolka, M.; Wang, Q.; Potyrailo, R. A.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society, Warrendale, PA, 2006, 894, 231–236

    Google Scholar 

  13. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Nanostructured plasmonic sensors, Chem. Rev. 2008, 108, 494–521

    Article  CAS  Google Scholar 

  14. Miyata, T.; Asami, N.; Uragami, T., A reversibly antigen-responsive hydrogel, Nature. 1999, 399, 766–769

    Article  CAS  Google Scholar 

  15. Potyrailo, R. A.; Ding, Z.; Butts, M. D.; Genovese, S. E.; Deng, T., Selective chemical sensing using structurally colored core-shell colloidal crystal films, IEEE Sensors J. 2008, 8, 815–822

    Article  CAS  Google Scholar 

  16. Convertino, A.; Capobianchi, A.; Valentini, A.; Cirillo, E. N. M., A new approach to organic solvent detection: High-reflectivity bragg reflectors based on a gold nanoparticle/teflon-like composite material, Adv. Mater. 2003, 15, 1103–1105

    Article  CAS  Google Scholar 

  17. Snow, P. A.; Squire, E. K.; Russell, P. S. J.; Canham, L. T., Vapor sensing using the optical properties of porous silicon bragg mirrors, J. Appl. Phys. 1999, 86, 1781–1784

    Article  CAS  Google Scholar 

  18. Gao, J.; Gao, T.; Sailor, M. J., Porous-silicon vapor sensor based on laser interferometry, Appl. Phys. Lett. 2000, 77, 901–903

    Article  CAS  Google Scholar 

  19. Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E., Morpho butterfly wing scales demonstrate highly selective vapour response, Nature Photonics. 2007, 1, 123–128

    Article  CAS  Google Scholar 

  20. Gao, T.; Gao, J.; Sailor, M. J., Tuning the response and stability of thin film mesoporous silicon vapor sensors by surface modification, Langmuir. 2002, 18, 9953–9957

    Article  CAS  Google Scholar 

  21. Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools ?, Angew. Chem. Int. Ed. 2006, 45, 702–723

    Article  CAS  Google Scholar 

  22. Bailey, R. C.; Hupp, J. T., Large-scale resonance amplification of optical sensing of volatile compounds with chemoresponsive visible-region diffraction gratings, J. Am. Chem. Soc. 2002, 124, 6767–6774

    Article  CAS  Google Scholar 

  23. Asher, S. A., Crystalline colloidal array chemical sensing devices, In ACS PRF summer school on nanoparticle materials, June 6–18, 2004. Eastern Michigan University, Ypsilanti, MI, 2004

    Google Scholar 

  24. Zhang, J.; Coombs, N.; Kumacheva, E., A new approach to hybrid nanocomposite materials with periodic structures, J. Am. Chem. Soc. 2002, 124, 14512–14513

    Article  CAS  Google Scholar 

  25. Fong, B.; Turksen, S.; Russo, P. S.; Stryjewski, W., Colloidal crystals of silica-homopolypeptide composite particles, Langmuir. 2004, 20, 266–269

    Article  CAS  Google Scholar 

  26. Suzuki, D.; Kawaguchi, H., Modification of gold nanoparticle composite nanostructures using thermosensitive core-shell particles as a template, Langmuir. 2005, 21, 8175–8179

    Article  CAS  Google Scholar 

  27. Osterloh, F.; Hiramatsu, H.; Porter, R.; Guo, T., Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: An opportunity for chemical sensor engineering, Langmuir. 2004, 20, 5553–5558

    Article  CAS  Google Scholar 

  28. Goodey, A. P.; McDevitt, J. T., Multishell microspheres with integrated chromatographic and detection layers for use in array sensors, J. Am. Chem. Soc. 2003, 125, 2870–2871

    Article  CAS  Google Scholar 

  29. Xu, X.; Friedman, G.; Humfeld, K.; Majetich, S.; Asher, S. A., Superparamagnetic photonic crystals, Adv. Mater. 2001, 13, 1681–1684

    Article  CAS  Google Scholar 

  30. Liz-Marzan, L. M.; Mulvaney, P., The assembly of coated nanocrystals, J. Phys. Chem. B. 2003, 107, 7312–7326

    Article  CAS  Google Scholar 

  31. Nayak, S.; Lyon, L. A., Ligand-functionalized core/shell microgels with permselective shells, Angew. Chem. Int. Ed. 2004, 43, 6706–6709

    Article  CAS  Google Scholar 

  32. Zhang, R.; Graf, K.; Berger, R., Swelling of cross-linked polystyrene spheres in toluene vapor, Appl. Phys. Lett. 2006, 89, 223114

    Article  Google Scholar 

  33. Arsenault, A. C.; Kitaev, V.; Manners, I.; Ozin, G. A.; Mihi, A.; Míguez, H., Vapor swellable colloidal photonic crystals with pressure tunability, J. Mater. Chem. 2005, 15, 133–138

    Article  CAS  Google Scholar 

  34. Fleischhaker, F.; Arsenault, A. C.; Tétreault, N.; Wang, Z.; Kitaev, V.; Peiris, F.; Mihi, A.; Miguez, H.; von Freymann, G.; Manners, I.; Zentel, R.; Ozin, G. A., “Smart” defects in colloidal photonic crystals, In Materials Research Society Symposium Proceedings, Materials Research Society, Warrendale, PA, 2006, Vol. 901E; paper # 0901-Ra22-27-Rb22-27

    Google Scholar 

  35. Yamada, Y.; Nakamura, T.; Ishi, M.; Yano, K., Reversible control of light reflection of a colloidal crystal film fabricated from monodisperse mesoporous silica spheres, Langmuir. 2006, 22, 2444–2446

    Article  CAS  Google Scholar 

  36. Ingle, J. D., Jr.; Crouch, S. R. Spectrochemical Analysis, Prentice Hall, Englewood Cliffs, NJ, 1988

    Google Scholar 

  37. Butts, M. D.; Genovese, S. E.; Glaser, P. B.; Williams, D. S., Hollow silica particles and methods for making same, US Patent Application 20070036705: 2007

    Google Scholar 

  38. Goodwin, J. W.; Ottewill, R. H.; Pelton, R., Studies on the preparation and characterization of monodisperse polystyrene lattices V: The preparation of cationic latices, Colloid Polymer Sci. 1979, 257, 61–69

    Article  CAS  Google Scholar 

  39. Ali, S. A.; Sengupta, M. J., Preparation and characterization of monodisperse polystyrene latexes of varying particle sizes without the use of surfactants, Polym. Mater. Sci. Eng. 1991, 8, 243–250

    CAS  Google Scholar 

  40. Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L., Single-crystal colloidal multilayers of controlled thickness, Chem. Mater. 1999, 11, 2132–2140

    Article  CAS  Google Scholar 

  41. Denkov, N.; Velev, O.; Kralchevski, P.; Ivanov, I.; Yoshimura, H.; Nagayama, K., Two-dimensional crystallization, Nature. 1993, 361, 26–26

    Article  Google Scholar 

  42. Ye, Y.-H.; Mayer, T. S.; Khoo, I.-C.; Divliansky, I. B.; Abrams, N.; Mallouk, T. E., Self-assembly of three-dimensional photonic-crystals with air-core line defects, J. Mater. Chem. 2002, 12, 3637–3639

    Article  CAS  Google Scholar 

  43. Xu, X.; Asher, S. A., Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals, J. Am. Chem. Soc. 2004, 126, 7940–7945

    Article  CAS  Google Scholar 

  44. Asher, S. A.; Weissman, J. M.; Tikhonov, A.; Coalson, R. D.; Kesavamoorthy, R., Diffraction in crystalline colloidal-array photonic crystals, Phys. Rev. E. 2004, 69, 066619

    Article  Google Scholar 

  45. Egen, M.; Voss, R.; Griesebock, B.; Zentel, R.; Romanov, S.; Torres, C. S., Heterostructures of polymer photonic crystal films, Chem. Mater. 2003, 15, 3786–3792

    Article  CAS  Google Scholar 

  46. Reichardt, C., Solvatochromic dyes as solvent polarity indicators, Chem. Rev. 1994, 94, 2319–2358

    Article  CAS  Google Scholar 

  47. Lide, D. R., Ed., CRC Handbook of Chemistry and Physics, 74th edn.; CRC Press, Boca Raton, FL, 1993

    Google Scholar 

  48. Sittig, M., Handbook of Toxic and Hazardous Chemicals and Carcinogens, Noyes Publications, Park Ridge, NJ, 1991

    Google Scholar 

  49. Choi, N.-J.; Lee, Y.-S.; Kwak, J.-H.; Park, J.-S.; Park, K.-B.; Shin, K.-S.; Park, H.-D.; Kim, J.-C.; Huh, J.-S.; Lee, D.-D., Chemical warfare agent sensor using mems structure and thick film fabrication method, Sens. Actuators B. 2005, 108, 177–183

    Article  CAS  Google Scholar 

  50. Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T., Detection of chemical warfare agents using nanostructured metal oxide sensors, Sens. Actuators B. 2005, 108, 41–55

    Article  CAS  Google Scholar 

  51. Bevelacqua, A.; Stilp, R., Terrorism handbook for operational responders, Delmar Publishers, Albany, NY, 1998

    Google Scholar 

  52. Wise, B. M.; Gallagher, N. B., PLS_Toolbox version 2.1 for use with MATLAB, Eigenvector Research, Inc., Manson, WA, 2000

    Google Scholar 

  53. Spaeth, K.; Gauglitz, G., Characterisation of the optical properties of thin polymer films for their application in detection of volatile organic compounds, Mat. Sci. Eng. C. 1998, 5, 187–191

    Article  Google Scholar 

  54. Lewis, N. S., Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors, Acc. Chem. Res. 2004, 37, 663–672

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by GE Corporate long-term research funds. We thank Prof. Sanford Asher from the University of Pittsburgh for useful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Potyrailo, R.A., Ding, Z., Butts, M.D., Genovese, S.E., Deng, T. (2009). New Approach for Selective Vapor Sensing Using Structurally Colored Self-Assembled Films. In: Fan, X. (eds) Advanced Photonic Structures for Biological and Chemical Detection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98063-8_4

Download citation

Publish with us

Policies and ethics