Skip to main content

Deep-Probe Optical Waveguides for Chemical and Biosensors

  • Chapter
  • First Online:
Advanced Photonic Structures for Biological and Chemical Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1214 Accesses

Abstract

Typical evanescent wave biosensors generate an electromagnetic wave at the sensor surface that penetrates 100–200 nm into the analysed medium. This has proven to be a highly sensitive tool to monitor refractive index changes in the close vicinity of the sensor surface. The sensitivity of such sensors can be enhanced significantly to monitor interactions caused by large micron scale objects such as bacterial and mammalian cells by increasing the penetration depth of the evanescent field. Recently, different formats of deep-probe optical waveguides including reverse waveguides (RW) based on low refractive index substrates (below 1.33) and metal-clad leaky waveguides (MCLW) have been developed for various sensing applications. These sensors are designed to maximize the overlap between the optical mode and the adlayer (superstrate layer) to be sensed. Increasing the penetration depth of the evanescent field opens up new perspectives for the detection of larger biological objects as it accommodates the majority of their body within the evanescent field. RWs use substrate materials with lower refractive index than that of the monitored superstrate layer (aqueous solution). In MCLWs, a thin metal layer is inserted between the substrate and the thicker waveguide layer. These sensor designs facilitate both increasing and tuning the penetration depth of the modes into the monitored aqueous solution and thereby significantly extend the range of possible application areas of optical waveguide sensors. The developed devices have been used for a range of biosensing applications, including the detection of bacteria, mammalian cells, organophosphorous pesticides and glucose using refractive index changes, absorbance and fluorescence monitoring. Integrating deep-probe sensors with an external electrical field or ultrasonic standing waves shortens analysis time significantly and reduces non-specific binding due to enhanced diffusion of analytes to the immobilized recognition receptors, and thus improves the detection limit by a few orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrick, N. J., Internal Reflection Spectroscopy, Wiley, New York, NY, 1967

    Google Scholar 

  2. Buckle, P. E.; Davies, R. J.; Kinning, T.; Yeung, D.; Edwards, P. R.; Pollard-Knight, D.; Lowe, C. R., The resonant mirror: A novel optical biosensor for direct sensing of biomelcular interactions. Part II: Applications, Biosens. Bioelectron. 1993, 8, 355–363

    Article  CAS  Google Scholar 

  3. Cush, R.; Cronin, J. M.; Stewart, W. J.; Maule, C. H.; Molloy, J. O.; Goddard, N. J., The resonant mirror: A novel optical biosensor for direct sensing of biomolecular interactions. Part 1: Principle of operation and associated instrumentation, Biosens. Bioelectron. 1993, 8, 347–354.

    Article  CAS  Google Scholar 

  4. Stamm, C.; Lukosz, W., Integrated optical difference interferometer as refractometer and chemical sensor, Sens. Actuators B 1993, 11, 177–181

    Article  CAS  Google Scholar 

  5. Huber, W.; Barner, R.; Fattinger, C.; Hubscher, J.; Koller, H.; Muller, F.; Schlatter, D.; Lukosz, W., Direct optical immunosensing (sensitivity and selectivity), Sens. Actuators B 1992, 6, 122–126

    Article  CAS  Google Scholar 

  6. Nellen, Ph.; Tiefenthaler, K.; Lukosz, W., Integrated optical input grating couplers as biochemical sensors, Sens. Actuators 1988, 15, 285–295

    Article  CAS  Google Scholar 

  7. Ramsden, J. J., Review of new experimental – techniques for investigating random sequential adsorption, J. Stat. Phys. 1993, 73, 853–877

    Article  Google Scholar 

  8. Lukosz, W.; Tiefenthaler, K., Sensitivity of integrated optical grating and prism couplers as (bio) chemical sensors, Sens. Actuators B 1988, 15, 273–284

    Article  CAS  Google Scholar 

  9. Horvath, R.; Lindvold, L. R.; Larsen, N. B., Reverse-symmetry waveguides: Theory and fabrication, Appl. Phys. B 2002, 74, 383–393

    Article  CAS  Google Scholar 

  10. Tien, P. K., Integrated optics and new wave phenomena, Rev. Mod. Phys. 1977, 49, 361–420

    Article  CAS  Google Scholar 

  11. Goddard, N. J.; Pollard-Knight, D.; Maule, C., Real-time biomolecular interaction analysis using the resonant mirror sensor, Analyst 1994, 119, 583–588

    Article  CAS  Google Scholar 

  12. Horvath, R.; Pedersen, H. C.; Cuisinier, F. J. G., Guided wave sensing of polyelectrolyte multilayers, Appl. Phys. Lett. 2006, 88, 111102–111104

    Article  Google Scholar 

  13. Goddard, N. J.; Singh, K.; Bounaira, A. F.; Holmes, R. J.; Baldock, S. J.; Pickering, L. W.; Fielden, P. R.; Snook, R. D., Anti-resonant reflecting optical waveguides (ARROWS) as optimal optical detectors for ?-TAS applications. In Micro Total Analysis Systems ?-TAS/Proceedings; 1998, 97–100

    Google Scholar 

  14. Goddard, N. J.; Hulme, J.; Malins, C.; Singh, K.; Fielden, P. R., Asymmetric anti-resonant reflecting optical waveguides (ARROW) as chemical sensors, Analyst 2002, 127, 378–382

    Article  CAS  Google Scholar 

  15. Horvath, R.; Pedersen, H. C.; Larsen, N. B., Demonstration of reverse symmetry waveguide sensing in aqueous solutions, Appl. Phys. Lett. 2002, 81, 2166–2168

    Article  CAS  Google Scholar 

  16. Horvath, R.; Pedersen, H. C.; Skivesen, N.; Selmeczi, D.; Larsen, N. B., Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing, Appl. Phys. Lett. 2005,86, 071101

    Google Scholar 

  17. Horvath, R.; Pedersen, H. C.; Skivesen, N.; Svanberg, C.; Larsen, N. B., Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating, J. Micromech. Microeng. 2005, 15, 1260–1264

    Article  CAS  Google Scholar 

  18. Horvath, R.; Skivesen, N.; Larsen, N. B.; Pedersen, H. C., Reverse symmetry waveguide for optical biosensing, In Frontiers in Chemical Sensors. Novel Principles and Techniques; Orellana, G.; Moreno-Bondi, M. C., Eds.; Springer Series on Chemical Sensors and Biosensors; Springer, Berlin, 2005, Vol. 3, 279–301

    Chapter  Google Scholar 

  19. Zourob, M.; Mohr, S.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., Small-volume refractive index and fluorescence sensor for micro total analytical system (?-TAS) applications, Sens. Actuators B 2003, 94, 304–312

    Article  CAS  Google Scholar 

  20. Zourob, M.; Mohr, S.; Fielden, P. R.; Goddard, N. J., The development of a metal clad leaky waveguide sensor for the detection of particles, Sens. Actuators B 2003, 90, 296–307

    Article  CAS  Google Scholar 

  21. Zourob, M.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., An integrated metal clad leaky waveguide sensor for detection of bacteria, Anal. Chem. 2005, 77, 232–242

    Article  CAS  Google Scholar 

  22. Zourob, M.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria, Lab Chip 2005, 5, 1360–1365

    Article  CAS  Google Scholar 

  23. Hawkes, J. J.; Coakley, W. T.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., Optical leaky waveguide sensor for detection of bacteria with ultrasound attractor force, Anal. Chem. 2005, 77, 6163–6168

    Article  CAS  Google Scholar 

  24. Zourob, M.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., Bacteria detection using disposable optical leaky waveguide sensors, Biosens. Bioelectron. 2005, 21, 293–302

    Article  CAS  Google Scholar 

  25. Skivesen, N.; Horvath, R.; Pedersen, H. C., Optimization of metal-clad waveguide sensors, Sens. Actuators B 2005, 106, 668–676

    Article  CAS  Google Scholar 

  26. Skivesen, N.; Horvath, R.; Pedersen, H. C., Peak-type and dip-type metal-clad waveguide sensing, Opt. Lett. 2005, 30, 1659–1661

    Article  CAS  Google Scholar 

  27. Skivesen, N.; Horvath, R.; Pedersen, H. C.; Thinggaard, S.; Larsen, N. B., Deep-probe metal-clad waveguide, Biosens. Bioelectron. 2007, 22, 1282–1288

    Article  CAS  Google Scholar 

  28. Born, M.; Wolf, E., Principles of Optics, 7th edn; Cambridge University Press, Cambridge, 1999

    Google Scholar 

  29. Zourob, M.; Elwary, S.; Turner A. A. F., Principles of Bacterial Detection; Biosensors, Recognition Receptors and Microsystems; Springer science + business media, ISBN: 978–0–387–75112–2, 2008

    Google Scholar 

  30. Tiefenthaler, K.; Lukosz, W., Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B 1989, 6, 209–220

    Article  CAS  Google Scholar 

  31. Horvath, R.; Pedersen, H. C.; Skivesen, N.; Selmeczi, D.; Larsen, N. B., Optical waveguide sensor for on-line monitoring of bacteria, Opt. Lett. 2003, 28, 1233–1235

    Article  Google Scholar 

  32. Horvath, R.; Lindvold, L. R.; Larsen, N. B., Fabrication of all-polymer freestanding waveguides, J. Micromech. Microeng. 2003, 13, 419–424

    Article  CAS  Google Scholar 

  33. Skivesen, N.; Horvath, R.; Pedersen, H. C., Multimode reverse-symmetry waveguide sensor for broad-range refractometry, Opt. Lett. 2003, 28, 2473–2475

    Article  Google Scholar 

  34. Horvath, R.; Cottier, K.; Pedersen, H. C.; Ramsden, J. J., Multidepth screening of living cells using optical waveguides, Biosens. Bioelectron. 2008, 24, 799–804

    Article  CAS  Google Scholar 

  35. Horvath, R.; Skivesen, N.; Pedersen, H. C., Measurement of guided lightmode intensity: An alternative waveguide sensing principle, Appl. Phys. Lett. 2004, 84, 4044–4046

    Article  CAS  Google Scholar 

  36. Horvath, R.; Voros, J.; Graf, R.; Fricsovszky, G. Textor, M.; Lindvold, L. R.; Papp, E., Effect of patterns and inhomogeneities on the surface of optical waveguides, Appl. Phys. B 2001, 72, 441

    Article  CAS  Google Scholar 

  37. Horvath, R.; Cottier, K., Imageless microscopy of surface patterns using optical waveguides, Appl. Phys. B 2008, 91, 319–327

    Article  Google Scholar 

  38. Rohrbach, A., Observing secretory granules with a multi-angle evanescent wave microscope, Biophys. J. 2000, 78, 2641–2654

    Article  CAS  Google Scholar 

  39. Perkins, E.; Squirrell, D., Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance, Biosens. Bioelectron. 2000, 14, 853–859

    Article  CAS  Google Scholar 

  40. Lenney, J. P.; Goddard, N. J.; Morey, J. C.; Snook, R. D.; Fielden, P. R., An electro-osmotic flow system with integrated planar optical waveguide sensing, Sens. Actuators B 1997, 39, 212–217

    Article  CAS  Google Scholar 

  41. Jakeway, S. C.; de Mello, A. J., Chip-based refractive index detection using a single point evanescent wave probe, Analyst 2001, 9, 1505–1510

    Article  Google Scholar 

  42. Wang, S.-L.; Huang, X.-J.; Fang, Z.-L.; Dasgupta, P. K., A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes, Anal. Chem. 2001, 73 4545–4549

    Article  CAS  Google Scholar 

  43. Salamon, Z.; Brown, M. I.; Tollin, G., Plasmon resonance spectroscopy: Probing molecular interactions within membranes, TIBS 1999, 24, 213–219

    CAS  Google Scholar 

  44. Salamon, Z.; Tollin, G., Graphical analysis of mass and anisotropy changes observed by plasmon-waveguide resonance spectroscopy can provide useful insights into membrane protein function, Biophys. J. 2004, 86, 2508–2516

    Article  CAS  Google Scholar 

  45. Zdzislaw, S.; Gordon, T., Optical anisotropy in lipid bilayer membranes: Coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape, Biophys. J. 2001, 80, 1557–1567

    Google Scholar 

  46. Zdzislaw, S.; Goran, L.; Gordon, T., Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes, Biophys. J. 2003, 84, 1796–1807

    Article  Google Scholar 

  47. Tollin, G.; Salamon, Z.; Cowell, S. M.; Hruby, V. J., Plasmon-waveguide resonance spectroscopy: A new tool for investigating signal transduction by G-protein coupled receptors, Life Sci. 2003, 73, 3307–3311

    Article  CAS  Google Scholar 

  48. Tollin, G.; Salamon, Z.; Hruby, V. J., Techniques: Plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions, Trends Pharmacol. Sci. 2003, 24, 655–659

    Article  CAS  Google Scholar 

  49. Alves, I. D.; Salamon, Z.; Varga, E.; Yamamura, H. I.; Tollin, G.; Hruby, V. J., Direct observation of G-protein binding to the human ?-opioid receptor using plasmon-waveguide resonance spectroscopy, J. Biol. Chem. 2003, 278, 48890–48897

    Article  CAS  Google Scholar 

  50. Alves, I. D.; Cowell, S. M.; Salamon, Z.; Devanathan, S.; Tollin, G.; Hruby, V. J., Different structural states of the proteolipid membrane are produced by ligand binding to the human ?-opioid receptor as shown by plasmon-waveguide resonance spectroscopy, Mol. Pharmacol. 2004, 65, 1248–1257

    Article  CAS  Google Scholar 

  51. Alves, I. D.; Ciano, K. A.; Boguslavski, V.; Varga, E.; Salamon, Z.; Yamamura, H. I.; Hruby, V. J.; Tollin, G., Selectivity, cooperativity, and reciprocity in the interactions between the ?-opioid receptor, its ligands, and G-proteins, J. Biol. Chem. 2004, 279, 44673–44682

    Article  CAS  Google Scholar 

  52. Zourob, M.; Goddard, N. J., Metal clad leaky waveguides for chemical and biosensing applications, Biosens. Bioelectron. 2005, 20, 1718–1727

    Article  CAS  Google Scholar 

  53. Zourob, M.; Simonian, A.; Wild, J.; Mohr, S.; Fan, X.; Abdulhalim, I.; Goddard, N. J., Optical leaky waveguide biosensors for the detection of organophosphorus pesticides, Analyst 2007, 132, 114–120

    Article  CAS  Google Scholar 

  54. Hulme, J., Optical Waveguide Biosensors, PhD thesis, UMIST, Manchester, UK, 2002

    Google Scholar 

  55. Rainina, E.; Simonian, A.; fremenco, A.; Varfolomeyev, S.; Wild, J., The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins, Biosens. Bioelectron. 1996, 11, 991–1000

    Article  CAS  Google Scholar 

  56. Mulchandani, A.; Chen, W.; Mulchandani, P.; Wang, J.; Rogers, K. R., TITEL, Biosensors for direct determination of organophosphate pesticides, Biosens. Bioelectron. 2001, 16, 225–230

    Article  CAS  Google Scholar 

  57. Mayes, A. G.; Blyth, J.; Millington, R. B.; Lowe, C. R., A holographic sensor based on a rationally designed synthetic polymer, J. Mol. Recognit. 1998, 11, 168–174

    Article  CAS  Google Scholar 

  58. Marshall, A. J.; Young, D. S.; Blyth, J.; Kabilan, S.; Lowe, C. R., Metabolite-sensitive holographic biosensors, Anal. Chem. 2004, 76, 1518–1523

    Article  CAS  Google Scholar 

  59. Marshall, A. J.; Blyth, J.; Davidson, C. A. B.; Lowe, C. R., pH-Sensitive holographic sensors, Anal. Chem. 2003, 75, 4423–4431

    Article  CAS  Google Scholar 

  60. Malins, C., Glever, H. G., Keyes, T. E., Vos, J. G., Dressick, W. J., Mac- Craith, B. D., Sol-gel immobilised ruthenium(II) polypyridyl complexes as chemical transducers for optical pH sensing, Sens. Actuators B 2000, 67, 89–95

    Article  CAS  Google Scholar 

  61. McDonagh, C.; Sheridan, F.; Butler, T.; McCraith, B. D., Characterization of sol-gel-derived silica films, J. Non-Cryst. Solids 1996, 194, 72–77

    Article  CAS  Google Scholar 

  62. Marquette, C. A.; Blum, L. J., Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples, Anal. Chim. Acta 1999, 381, 1–10

    Article  CAS  Google Scholar 

  63. Watts, H.; Lowe, C.; Pollard-Knight, D., Optical biosensor for monitoring microbial cells, Anal. Chem. 1994, 66, 2465–2470

    Article  CAS  Google Scholar 

  64. DeFlaun, M. F.; Condee, C. W., Electrokinetic transport of bacteria, J. Hazard. Mater. 1997, 55, 263–277

    Article  CAS  Google Scholar 

  65. Hawkes, J. J.; Long, M. J.; Coakley W. T.; McDonnell, M. B. Ultrasonic deposition of cells on a surface, Biosens. Bioelectron. 2004, 19, 1021–1028

    Article  CAS  Google Scholar 

  66. Spengler, J. F.; Jekel, M.; Christensen, K. T.; Adrian, R. J.; Hawkes, J. J.; Coakley, W. T., Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field, Bioseparation 2000, 9, 329–341

    Article  CAS  Google Scholar 

  67. Salamon, Z.; Macleod, H. A.; Tollin, G., Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties, Biophys. J. 1997, 73, 2791–2797

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zourob, M., Skivesen, N., Horvath, R., Mohr, S., Goddard, N.J. (2009). Deep-Probe Optical Waveguides for Chemical and Biosensors. In: Fan, X. (eds) Advanced Photonic Structures for Biological and Chemical Detection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98063-8_15

Download citation

Publish with us

Policies and ethics